IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v277y2023ics0360544223010514.html
   My bibliography  Save this article

Numerical simulation of CO2 sequestration in shale gas reservoirs at reservoir scale coupled with enhanced gas recovery

Author

Listed:
  • Tang, Chao
  • Zhou, Wen
  • Chen, Zhangxin
  • Wei, Jiabao

Abstract

Shale gas resources are very important unconventional fossil fuel resources. Due to the competitive adsorption relationship between CO2 and CH4, carbon capture and sequestration in shale gas reservoirs provide an opportunity to use CO2 for enhanced gas recovery while providing access to CH4. To evaluate the CO2 sequestration and enhanced gas recovery (CO2-EGR), we developed a model that takes into account all the major contributing mechanisms of shale gas dynamics, including viscous flow, gas slippage, Knudsen diffusion, competitive adsorption of different components, and real gas effects. The modeled CO2-EGR system consisted of two CO2 injection wells and a production well. The feasibility of CO2 sequestration and enhanced gas recovery was studied by numerical simulations, and the responses of a shale gas reservoir to the reservoir pressure, temperature, and inherent permeability were analyzed. The results showed that the formation temperature, mean pore size, and injection rate were the most important factors affecting the CO2-EGR. Of the injected CO2, 45%–60% could be sequestered in the shale reservoir, of which about 63% was sequestered in an adsorbed state, while providing 10%–15% incremental gas recovery.

Suggested Citation

  • Tang, Chao & Zhou, Wen & Chen, Zhangxin & Wei, Jiabao, 2023. "Numerical simulation of CO2 sequestration in shale gas reservoirs at reservoir scale coupled with enhanced gas recovery," Energy, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:energy:v:277:y:2023:i:c:s0360544223010514
    DOI: 10.1016/j.energy.2023.127657
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223010514
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127657?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chao Tang & Xiaofan Chen & Zhimin Du & Ping Yue & Jiabao Wei, 2018. "Numerical Simulation Study on Seepage Theory of a Multi-Section Fractured Horizontal Well in Shale Gas Reservoirs Based on Multi-Scale Flow Mechanisms," Energies, MDPI, vol. 11(9), pages 1-20, September.
    2. Tang, Chao & Zhou, Wen & Du, Zhimin & Chen, Zhangxin & Wei, Jiabao, 2022. "Numerical simulation of different-scale fracture effects on saturation distributions in waterflooding via the finite volume method," Energy, Elsevier, vol. 244(PA).
    3. Gunter, W. D. & Wong, S. & Cheel, D. B. & Sjostrom, G., 1998. "Large CO2 Sinks: Their role in the mitigation of greenhouse gases from an international, national (Canadian) and provincial (Alberta) perspective," Applied Energy, Elsevier, vol. 61(4), pages 209-227, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chongyang & Zhang, Dongming & Liu, Chenxi & Pan, Yisha & Jiang, Zhigang & Yu, Beichen & Lin, Yun, 2023. "Deformation and seepage characteristics of water-saturated shale under true triaxial stress," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ningning Zhao & Tianfu Xu & Kairan Wang & Hailong Tian & Fugang Wang, 2018. "Experimental study of physical‐chemical properties modification of coal after CO2 sequestration in deep unmineable coal seams," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(3), pages 510-528, June.
    2. You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
    3. Cui, Guodong & Zhang, Liang & Ren, Bo & Enechukwu, Chioma & Liu, Yanmin & Ren, Shaoran, 2016. "Geothermal exploitation from depleted high temperature gas reservoirs via recycling supercritical CO2: Heat mining rate and salt precipitation effects," Applied Energy, Elsevier, vol. 183(C), pages 837-852.
    4. Dai, Zhenxue & Zhang, Ye & Bielicki, Jeffrey & Amooie, Mohammad Amin & Zhang, Mingkan & Yang, Changbing & Zou, Youqin & Ampomah, William & Xiao, Ting & Jia, Wei & Middleton, Richard & Zhang, Wen & Sun, 2018. "Heterogeneity-assisted carbon dioxide storage in marine sediments," Applied Energy, Elsevier, vol. 225(C), pages 876-883.
    5. Luo, Feng & Xu, Rui-Na & Jiang, Pei-Xue, 2013. "Numerical investigation of the influence of vertical permeability heterogeneity in stratified formation and of injection/production well perforation placement on CO2 geological storage with enhanced C," Applied Energy, Elsevier, vol. 102(C), pages 1314-1323.
    6. Long Ren & Wendong Wang & Yuliang Su & Mingqiang Chen & Cheng Jing & Nan Zhang & Yanlong He & Jian Sun, 2018. "Multiporosity and Multiscale Flow Characteristics of a Stimulated Reservoir Volume (SRV)-Fractured Horizontal Well in a Tight Oil Reservoir," Energies, MDPI, vol. 11(10), pages 1-14, October.
    7. Kyoungsu Kim & Jonggeun Choe, 2019. "Hydraulic Fracture Design with a Proxy Model for Unconventional Shale Gas Reservoir with Considering Feasibility Study," Energies, MDPI, vol. 12(2), pages 1-12, January.
    8. Xie, Qiyuan & Tu, Ran & Jiang, Xi & Li, Kang & Zhou, Xuejin, 2014. "The leakage behavior of supercritical CO2 flow in an experimental pipeline system," Applied Energy, Elsevier, vol. 130(C), pages 574-580.
    9. Yen Adams Sokama‐Neuyam & Jann Rune Ursin, 2018. "The coupled effect of salt precipitation and fines mobilization on CO2 injectivity in sandstone," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 1066-1078, December.
    10. Liu, Zhengdong & Lin, Xiaosong & Zhu, Wancheng & Hu, Ze & Hao, Congmeng & Su, Weiwei & Bai, Gang, 2023. "Effects of coal permeability rebound and recovery phenomenon on CO2 storage capacity under different coalbed temperature conditions during CO2-ECBM process," Energy, Elsevier, vol. 284(C).
    11. Ampomah, W. & Balch, R.S. & Cather, M. & Will, R. & Gunda, D. & Dai, Z. & Soltanian, M.R., 2017. "Optimum design of CO2 storage and oil recovery under geological uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 80-92.
    12. Minxuan Li & Liang Cheng & Dehua Liu & Jiani Hu & Wei Zhang & Kuidong Li & Jialin Xiao & Xiaojun Wang & Feng Zhang, 2021. "Big Data Analysis and Research on Fracturing Construction Parameters of Shale Gas Horizontal Wells—A Case Study of Horizontal Wells in Fuling Demonstration Area, China," Energies, MDPI, vol. 14(24), pages 1-17, December.
    13. Kim, Youngmin & Jang, Hochang & Kim, Junggyun & Lee, Jeonghwan, 2017. "Prediction of storage efficiency on CO2 sequestration in deep saline aquifers using artificial neural network," Applied Energy, Elsevier, vol. 185(P1), pages 916-928.
    14. Ferng, Jiun-Jiun, 2003. "Allocating the responsibility of CO2 over-emissions from the perspectives of benefit principle and ecological deficit," Ecological Economics, Elsevier, vol. 46(1), pages 121-141, August.
    15. Honghua Tao & Liehui Zhang & Qiguo Liu & Qi Deng & Man Luo & Yulong Zhao, 2018. "An Analytical Flow Model for Heterogeneous Multi-Fractured Systems in Shale Gas Reservoirs," Energies, MDPI, vol. 11(12), pages 1-19, December.
    16. Biggs, Jeffrey & Laaksonen-Craig, Susanna, 2004. "Viability Of Carbon Offset Generating Projects In Boreal Ontario," Working Papers 18162, University of Victoria, Resource Economics and Policy.
    17. Jianchao Cai & Zhien Zhang & Qinjun Kang & Harpreet Singh, 2019. "Recent Advances in Flow and Transport Properties of Unconventional Reservoirs," Energies, MDPI, vol. 12(10), pages 1-5, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:277:y:2023:i:c:s0360544223010514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.