IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v276y2023ics0360544223008459.html
   My bibliography  Save this article

Energy and exergy evaluation of new design nabla shaped tubular solar air heater (∇ TSAH): Experimental investigation

Author

Listed:
  • Hassan, Hamdy
  • Osman, Osman Omran
  • Abdelmoez, Mahmoud N.
  • abo-Elfadl, Saleh

Abstract

Solar air heating (SAH) is a low-cost method for air heating using solar energy. An energy and exergy performance is performed experimentally on new designed tubular SAH having tubular absorber of adjacent tubes forming flat pack. Each tube of the absorber contains three adjacent internal tubes forming nabla shape (∇). The nabla tubular SAH (∇TSAH) performance is studied compared to ordinary tubular SAH (OTSAH) having tubular absorber only for single pass (SP) and double pass (DP) flow conditions and different mass flow rates of air (MFRA). The study is investigated under upper Egypt hot climate conditions and 0.018–0.081 kg/s MFRA. The results demonstrate that ∇TSAH has higher outlet air temperature, energy gain, higher energy, exergy, and thermohydraulic efficiencies, and lower top losses than the OTSAH. The new design boosts the exit air temperature by about 13.5 and 5 °C for SP and DP, respectively compared to OTSAH. Moreover, it enhances the energy efficiency by about 28.1% and 71.5% and the exergy efficiency by about 56.2% and 76.8% compared to OTSAH and flat plate SAH (FSAH), respectively at 0.027 kg/s. The maximum ∇TSAH output net energy gain is achieved at 0.072 kg/s for SP and 0.036 kg/s for DP.

Suggested Citation

  • Hassan, Hamdy & Osman, Osman Omran & Abdelmoez, Mahmoud N. & abo-Elfadl, Saleh, 2023. "Energy and exergy evaluation of new design nabla shaped tubular solar air heater (∇ TSAH): Experimental investigation," Energy, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:energy:v:276:y:2023:i:c:s0360544223008459
    DOI: 10.1016/j.energy.2023.127451
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223008459
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127451?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Poongavanam, Ganesh Kumar & Panchabikesan, Karthik & Leo, Anto Joseph Deeyoko & Ramalingam, Velraj, 2018. "Experimental investigation on heat transfer augmentation of solar air heater using shot blasted V-corrugated absorber plate," Renewable Energy, Elsevier, vol. 127(C), pages 213-229.
    2. Sahu, Mukesh Kumar & Prasad, Radha Krishna, 2016. "Exergy based performance evaluation of solar air heater with arc-shaped wire roughened absorber plate," Renewable Energy, Elsevier, vol. 96(PA), pages 233-243.
    3. Khanlari, Ataollah & Tuncer, Azim Doğuş & Sözen, Adnan & Aytaç, İpek & Çiftçi, Erdem & Variyenli, Halil İbrahim, 2022. "Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles," Renewable Energy, Elsevier, vol. 187(C), pages 586-602.
    4. Qader, Bootan S. & Supeni, E.E. & Ariffin, M.K.A. & Talib, A.R. Abu, 2019. "Numerical investigation of flow through inclined fins under the absorber plate of solar air heater," Renewable Energy, Elsevier, vol. 141(C), pages 468-481.
    5. Ekka, Jasinta Poonam & Bala, Krishnendu & Muthukumar, P. & Kanaujiya, Dipak Kumar, 2020. "Performance analysis of a forced convection mixed mode horizontal solar cabinet dryer for drying of black ginger (Kaempferia parviflora) using two successive air mass flow rates," Renewable Energy, Elsevier, vol. 152(C), pages 55-66.
    6. Akpinar, Ebru Kavak & Koçyigit, Fatih, 2010. "Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates," Applied Energy, Elsevier, vol. 87(11), pages 3438-3450, November.
    7. Mandal, Soumya & Ghosh, Subir Kumar, 2020. "Experimental investigation of the performance of a double pass solar water heater with reflector," Renewable Energy, Elsevier, vol. 149(C), pages 631-640.
    8. Kumar, Amit & Akshayveer, & Singh, Ajeet Pratap & Singh, O.P., 2022. "Investigations for efficient design of a new counter flow double-pass curved solar air heater," Renewable Energy, Elsevier, vol. 185(C), pages 759-770.
    9. Saini, R.P. & Verma, Jitendra, 2008. "Heat transfer and friction factor correlations for a duct having dimple-shape artificial roughness for solar air heaters," Energy, Elsevier, vol. 33(8), pages 1277-1287.
    10. Hassan, Hamdy & Abo-Elfadl, Saleh, 2018. "Experimental study on the performance of double pass and two inlet ports solar air heater (SAH) at different configurations of the absorber plate," Renewable Energy, Elsevier, vol. 116(PA), pages 728-740.
    11. Yang, Ming & Yang, Xudong & Li, Xing & Wang, Zhifeng & Wang, Pengsu, 2014. "Design and optimization of a solar air heater with offset strip fin absorber plate," Applied Energy, Elsevier, vol. 113(C), pages 1349-1362.
    12. Nowzari, Raheleh & Aldabbagh, L.B.Y. & Egelioglu, F., 2014. "Single and double pass solar air heaters with partially perforated cover and packed mesh," Energy, Elsevier, vol. 73(C), pages 694-702.
    13. Priyam, Abhishek & Chand, Prabha, 2018. "Effect of wavelength and amplitude on the performance of wavy finned absorber solar air heater," Renewable Energy, Elsevier, vol. 119(C), pages 690-702.
    14. Kumar, Amit & Singh, Ajeet Pratap & Akshayveer, & Singh, O.P., 2022. "Performance characteristics of a new curved double-pass counter flow solar air heater," Energy, Elsevier, vol. 239(PA).
    15. Hassan, Hamdy & Abo-Elfadl, Saleh & El-Dosoky, M.F., 2020. "An experimental investigation of the performance of new design of solar air heater (tubular)," Renewable Energy, Elsevier, vol. 151(C), pages 1055-1066.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan, Hamdy & Abo-Elfadl, Saleh & El-Dosoky, M.F., 2020. "An experimental investigation of the performance of new design of solar air heater (tubular)," Renewable Energy, Elsevier, vol. 151(C), pages 1055-1066.
    2. Mgbemene, Chigbo & Jacobs, Ifeanyi & Okoani, Anthony & Ononiwu, Ndudim, 2022. "Experimental investigation on the performance of aluminium soda can solar air heater," Renewable Energy, Elsevier, vol. 195(C), pages 182-193.
    3. Tuncer, Azim Doğuş & Khanlari, Ataollah, 2023. "Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey," Energy, Elsevier, vol. 282(C).
    4. Erick César, López-Vidaña & Ana Lilia, César-Munguía & Octavio, García-Valladares & Orlando, Salgado Sandoval & Alfredo, Domínguez Niño, 2021. "Energy and exergy analyses of a mixed-mode solar dryer of pear slices (Pyrus communis L)," Energy, Elsevier, vol. 220(C).
    5. Debnath, Suman & Das, Biplab & Randive, P.R. & Pandey, K.M., 2018. "Performance analysis of solar air collector in the climatic condition of North Eastern India," Energy, Elsevier, vol. 165(PB), pages 281-298.
    6. Khanlari, Ataollah & Tuncer, Azim Doğuş, 2023. "Analysis of an infrared-assisted triple-flow prototype solar drying system with nano-embedded absorber coating: An experimental and numerical study," Renewable Energy, Elsevier, vol. 216(C).
    7. Ali Hassan & Ali M. Nikbakht & Sabrina Fawzia & Prasad Yarlagadda & Azharul Karim, 2024. "A Comprehensive Review of the Thermohydraulic Improvement Potentials in Solar Air Heaters through an Energy and Exergy Analysis," Energies, MDPI, vol. 17(7), pages 1-47, March.
    8. Yu Wang & Mikael Boulic & Robyn Phipps & Manfred Plagmann & Chris Cunningham, 2020. "Experimental Performance of a Solar Air Collector with a Perforated Back Plate in New Zealand," Energies, MDPI, vol. 13(6), pages 1-16, March.
    9. Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
    10. Kumar, Rajneesh & Kumar, Anoop & Goel, Varun, 2019. "Performance improvement and development of correlation for friction factor and heat transfer using computational fluid dynamics for ribbed triangular duct solar air heater," Renewable Energy, Elsevier, vol. 131(C), pages 788-799.
    11. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    12. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    13. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Alam, Tabish & Kim, Man-Hoe, 2017. "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 779-793.
    15. Kumar, Amit & Akshayveer, & Singh, Ajeet Pratap & Singh, O.P., 2022. "Investigations for efficient design of a new counter flow double-pass curved solar air heater," Renewable Energy, Elsevier, vol. 185(C), pages 759-770.
    16. Madhwesh Nagaraj & Manu Krishna Reddy & Arun Kumar Honnesara Sheshadri & Kota Vasudeva Karanth, 2022. "Numerical Analysis of an Aerofoil Fin Integrated Double Pass Solar Air Heater for Thermal Performance Enhancement," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    17. Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Kumar, Sachin, 2021. "Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    18. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    19. Singh, Satyender & Dhiman, Prashant, 2016. "Thermal performance of double pass packed bed solar air heaters – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1010-1031.
    20. Varun Pratap Singh & Siddharth Jain & Ashish Karn & Ashwani Kumar & Gaurav Dwivedi & Chandan Swaroop Meena & Nitesh Dutt & Aritra Ghosh, 2022. "Recent Developments and Advancements in Solar Air Heaters: A Detailed Review," Sustainability, MDPI, vol. 14(19), pages 1-55, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:276:y:2023:i:c:s0360544223008459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.