IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v274y2023ics0360544223007120.html
   My bibliography  Save this article

A techno-economic assessment of bioethanol production from switchgrass through biomass gasification and syngas fermentation

Author

Listed:
  • Regis, Francesco
  • Monteverde, Alessandro Hugo Antonio
  • Fino, Debora

Abstract

The consumption of fossil fuels, which are not economically and environmentally sustainable, can be reduced by producing biofuels, such as bioethanol. This study presents a reproducible model of the ethanol production process developed with Aspen Plus® software. The work's goal is to enhance the amount of ethanol produced per tonne of biomass and, therefore, the carbon yield of the process. The main steps of the process are the gasification of the pretreated switchgrass, the cleaning of the syngas obtained, the fermentation of the syngas to ethanol and its purification. The parameters relating to gasification were set to produce syngas with an optimal composition for the fermenter. A discounted cash flow analysis was used to determine the minimum ethanol selling price for different plant scales and H2 prices. By enriching the syngas with green H2 and adopting an optimal bioreactor, a remarkable ethanol yield of 1015.04 L/t of switchgrass can be obtained. Considering a plant size of 750,000 t/y of switchgrass, the minimum ethanol selling price is 1.07 $/L for the base scenario and is further lowered to 0.77 $/L for the 2050 H2 scenario. The potential savings of building more plants were also assessed thanks to the learning effects.

Suggested Citation

  • Regis, Francesco & Monteverde, Alessandro Hugo Antonio & Fino, Debora, 2023. "A techno-economic assessment of bioethanol production from switchgrass through biomass gasification and syngas fermentation," Energy, Elsevier, vol. 274(C).
  • Handle: RePEc:eee:energy:v:274:y:2023:i:c:s0360544223007120
    DOI: 10.1016/j.energy.2023.127318
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223007120
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tamás Mizik & Lajos Nagy & Zoltán Gabnai & Attila Bai, 2020. "The Major Driving Forces of the EU and US Ethanol Markets with Special Attention Paid to the COVID-19 Pandemic," Energies, MDPI, vol. 13(21), pages 1-22, October.
    2. Hanno Richter & Michael E. Martin & Largus T. Angenent, 2013. "A Two-Stage Continuous Fermentation System for Conversion of Syngas into Ethanol," Energies, MDPI, vol. 6(8), pages 1-14, August.
    3. Hoseinzade, Leila & Adams, Thomas A., 2019. "Techno-economic and environmental analyses of a novel, sustainable process for production of liquid fuels using helium heat transfer," Applied Energy, Elsevier, vol. 236(C), pages 850-866.
    4. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jain, Sanyam & Kumar, Shushil, 2024. "A comprehensive review of bioethanol production from diverse feedstocks: Current advancements and economic perspectives," Energy, Elsevier, vol. 296(C).
    2. Hilal Unyay & Nuriye Altınay Perendeci & Piotr Piersa & Szymon Szufa & Agata Skwarczynska-Wojsa, 2024. "Harnessing Switchgrass for Sustainable Energy: Bioethanol Production Processes and Pretreatment Technologies," Energies, MDPI, vol. 17(19), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenran Gao & Hui Li & Karnowo & Bing Song & Shu Zhang, 2020. "Integrated Leaching and Thermochemical Technologies for Producing High-Value Products from Rice Husk: Leaching of Rice Husk with the Aqueous Phases of Bioliquids," Energies, MDPI, vol. 13(22), pages 1-15, November.
    2. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    3. Karatayev, Marat & Clarke, Michèle L., 2016. "A review of current energy systems and green energy potential in Kazakhstan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 491-504.
    4. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.
    5. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    6. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    7. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    8. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    9. Gao, Chunjiao & Chen, Hongxi, 2023. "Electricity from renewable energy resources: Sustainable energy transition and emissions for developed economies," Utilities Policy, Elsevier, vol. 82(C).
    10. Li, Xue & Lin, Cong & Wang, Yang & Zhao, Lingying & Duan, Na & Wu, Xudong, 2015. "Analysis of rural household energy consumption and renewable energy systems in Zhangziying town of Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 184-193.
    11. Nadine Székely & Jan vom Brocke, 2017. "What can we learn from corporate sustainability reporting? Deriving propositions for research and practice from over 9,500 corporate sustainability reports published between 1999 and 2015 using topic ," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-27, April.
    12. Frank Hensgen & Michael Wachendorf, 2018. "Aqueous Leaching Prior to Dewatering Improves the Quality of Solid Fuels from Grasslands," Energies, MDPI, vol. 11(4), pages 1-13, April.
    13. Karunakaran Venkatesan & Uma Govindarajan & Padmanathan Kasinathan & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen & Zbigniew Leonowicz, 2019. "Economic Analysis of HRES Systems with Energy Storage During Grid Interruptions and Curtailment in Tamil Nadu, India: A Hybrid RBFNOEHO Technique," Energies, MDPI, vol. 12(16), pages 1-26, August.
    14. Mumuh Muhsin Z. & Nina Herlina & Miftahul Falah & Etty Saringendyanti & Kunto Sofianto & Norlaila Md Zin, 2021. "Impact of Climate Change on Agriculture Sector of Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 138-144.
    15. Aldona Standar & Agnieszka Kozera & Łukasz Satoła, 2021. "The Importance of Local Investments Co-Financed by the European Union in the Field of Renewable Energy Sources in Rural Areas of Poland," Energies, MDPI, vol. 14(2), pages 1-23, January.
    16. Sara Sousa, 2021. "Environmental Taxation in Portugal: A Contribution to Sustainability," Eurasian Studies in Business and Economics, in: Mehmet Huseyin Bilgin & Hakan Danis & Ender Demir & Sofia Vale (ed.), Eurasian Economic Perspectives, pages 369-382, Springer.
    17. Aytav, Emre & Kocar, Günnur, 2013. "Biodiesel from the perspective of Turkey: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 335-350.
    18. Tükenmez, Mine & Demireli, Erhan, 2012. "Renewable energy policy in Turkey with the new legal regulations," Renewable Energy, Elsevier, vol. 39(1), pages 1-9.
    19. Stanisław Bielski & Renata Marks-Bielska & Anna Zielińska-Chmielewska & Kęstutis Romaneckas & Egidijus Šarauskis, 2021. "Importance of Agriculture in Creating Energy Security—A Case Study of Poland," Energies, MDPI, vol. 14(9), pages 1-20, April.
    20. Zhang, Chi & Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2017. "On electricity consumption and economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 353-368.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:274:y:2023:i:c:s0360544223007120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.