IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v261y2022ipbs0360544222021466.html
   My bibliography  Save this article

Integrating flexibility provision into operation planning: A generic framework to assess potentials and bid prices of end-users

Author

Listed:
  • Wanapinit, Natapon
  • Thomsen, Jessica
  • Weidlich, Anke

Abstract

End-user flexibility is an essential resource for decarbonized energy systems, and can be exploited via distributed flexibility markets. To participate, end-users must weigh potential revenues against their primary objectives, subject to their operational constraints. This work presents a technology-neutral framework to simultaneously determine the optimal operation, flexibility bids and prices by extending original operation planning problems into two-stage stochastic ones. Recovery constraints are introduced to exclude potentially adverse bids. As case studies, diverse residential end-users, who minimize their cost and additionally place flexibility bids, are analyzed. The results reveal complex time-varying and system-specific dynamics of bid volumes and prices. For example, heating systems receiving flat electricity rates can effortlessly bid flexibility from forcing early heat generation, namely, positive flexibility for combined heat and power units and negative flexibility for heat pumps. However, under time-varying rates, bid patterns change and become synchronized, which can cause scarcity in markets with homogeneous participants. With this framework, end-users can assess technical and economic potentials, plan their operations and market participation. As operation planning also reckons with the expected flexibility demand of the system, bids in time of need are likely higher. Lastly, detailed potential assessments also aid operators in designing flexibility portfolios or markets.

Suggested Citation

  • Wanapinit, Natapon & Thomsen, Jessica & Weidlich, Anke, 2022. "Integrating flexibility provision into operation planning: A generic framework to assess potentials and bid prices of end-users," Energy, Elsevier, vol. 261(PB).
  • Handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222021466
    DOI: 10.1016/j.energy.2022.125261
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222021466
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2020. "Quantifying power system flexibility provision," Applied Energy, Elsevier, vol. 279(C).
    2. Pol Olivella-Rosell & Pau Lloret-Gallego & Íngrid Munné-Collado & Roberto Villafafila-Robles & Andreas Sumper & Stig Ødegaard Ottessen & Jayaprakash Rajasekharan & Bernt A. Bremdal, 2018. "Local Flexibility Market Design for Aggregators Providing Multiple Flexibility Services at Distribution Network Level," Energies, MDPI, vol. 11(4), pages 1-19, April.
    3. De Coninck, Roel & Helsen, Lieve, 2016. "Quantification of flexibility in buildings by cost curves – Methodology and application," Applied Energy, Elsevier, vol. 162(C), pages 653-665.
    4. Helin, Kristo & Käki, Anssi & Zakeri, Behnam & Lahdelma, Risto & Syri, Sanna, 2017. "Economic potential of industrial demand side management in pulp and paper industry," Energy, Elsevier, vol. 141(C), pages 1681-1694.
    5. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    6. Ramin, D. & Spinelli, S. & Brusaferri, A., 2018. "Demand-side management via optimal production scheduling in power-intensive industries: The case of metal casting process," Applied Energy, Elsevier, vol. 225(C), pages 622-636.
    7. Gils, Hans Christian, 2014. "Assessment of the theoretical demand response potential in Europe," Energy, Elsevier, vol. 67(C), pages 1-18.
    8. Le Dréau, J. & Heiselberg, P., 2016. "Energy flexibility of residential buildings using short term heat storage in the thermal mass," Energy, Elsevier, vol. 111(C), pages 991-1002.
    9. Roos, Aleksandra & Bolkesjø, Torjus Folsland, 2018. "Value of demand flexibility on spot and reserve electricity markets in future power system with increased shares of variable renewable energy," Energy, Elsevier, vol. 144(C), pages 207-217.
    10. Paul Schott & Johannes Sedlmeir & Nina Strobel & Thomas Weber & Gilbert Fridgen & Eberhard Abele, 2019. "A Generic Data Model for Describing Flexibility in Power Markets," Energies, MDPI, vol. 12(10), pages 1-29, May.
    11. Ashok, S., 2006. "Peak-load management in steel plants," Applied Energy, Elsevier, vol. 83(5), pages 413-424, May.
    12. Fischer, David & Wolf, Tobias & Wapler, Jeannette & Hollinger, Raphael & Madani, Hatef, 2017. "Model-based flexibility assessment of a residential heat pump pool," Energy, Elsevier, vol. 118(C), pages 853-864.
    13. Poplavskaya, Ksenia & de Vries, Laurens, 2019. "Distributed energy resources and the organized balancing market: A symbiosis yet? Case of three European balancing markets," Energy Policy, Elsevier, vol. 126(C), pages 264-276.
    14. Yilmaz, S. & Weber, S. & Patel, M.K., 2019. "Who is sensitive to DSM? Understanding the determinants of the shape of electricity load curves and demand shifting: Socio-demographic characteristics, appliance use and attitudes," Energy Policy, Elsevier, vol. 133(C).
    15. Nikzad, Mehdi & Samimi, Abouzar, 2021. "Integration of designing price-based demand response models into a stochastic bi-level scheduling of multiple energy carrier microgrids considering energy storage systems," Applied Energy, Elsevier, vol. 282(PA).
    16. Harder, Nick & Qussous, Ramiz & Weidlich, Anke, 2020. "The cost of providing operational flexibility from distributed energy resources," Applied Energy, Elsevier, vol. 279(C).
    17. Pechmann, Agnes & Shrouf, Fadi & Chonin, Max & Steenhusen, Nanke, 2017. "Load-shifting potential at SMEs manufacturing sites: A methodology and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 431-438.
    18. Natapon Wanapinit & Jessica Thomsen, 2021. "Synergies between Renewable Energy and Flexibility Investments: A Case of a Medium-Sized Industry," Energies, MDPI, vol. 14(22), pages 1-24, November.
    19. Nuytten, Thomas & Claessens, Bert & Paredis, Kristof & Van Bael, Johan & Six, Daan, 2013. "Flexibility of a combined heat and power system with thermal energy storage for district heating," Applied Energy, Elsevier, vol. 104(C), pages 583-591.
    20. Wanapinit, Natapon & Thomsen, Jessica & Kost, Christoph & Weidlich, Anke, 2021. "An MILP model for evaluating the optimal operation and flexibility potential of end-users," Applied Energy, Elsevier, vol. 282(PB).
    21. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    22. Ottesen, Stig Ødegaard & Tomasgard, Asgeir & Fleten, Stein-Erik, 2018. "Multi market bidding strategies for demand side flexibility aggregators in electricity markets," Energy, Elsevier, vol. 149(C), pages 120-134.
    23. Jin, Xiaolong & Wu, Qiuwei & Jia, Hongjie, 2020. "Local flexibility markets: Literature review on concepts, models and clearing methods," Applied Energy, Elsevier, vol. 261(C).
    24. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
    25. Ashok, S. & Banerjee, R., 2000. "Load-management applications for the industrial sector," Applied Energy, Elsevier, vol. 66(2), pages 105-111, June.
    26. Xenos, Dionysios P. & Mohd Noor, Izzati & Matloubi, Mitra & Cicciotti, Matteo & Haugen, Trond & Thornhill, Nina F., 2016. "Demand-side management and optimal operation of industrial electricity consumers: An example of an energy-intensive chemical plant," Applied Energy, Elsevier, vol. 182(C), pages 418-433.
    27. Biegel, Benjamin & Westenholz, Mikkel & Hansen, Lars Henrik & Stoustrup, Jakob & Andersen, Palle & Harbo, Silas, 2014. "Integration of flexible consumers in the ancillary service markets," Energy, Elsevier, vol. 67(C), pages 479-489.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanapinit, Natapon & Thomsen, Jessica & Kost, Christoph & Weidlich, Anke, 2021. "An MILP model for evaluating the optimal operation and flexibility potential of end-users," Applied Energy, Elsevier, vol. 282(PB).
    2. Harder, Nick & Qussous, Ramiz & Weidlich, Anke, 2020. "The cost of providing operational flexibility from distributed energy resources," Applied Energy, Elsevier, vol. 279(C).
    3. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    5. Lechl, Michael & Fürmann, Tim & de Meer, Hermann & Weidlich, Anke, 2023. "A review of models for energy system flexibility requirements and potentials using the new FLEXBLOX taxonomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    7. Pallonetto, Fabiano & De Rosa, Mattia & D’Ettorre, Francesco & Finn, Donal P., 2020. "On the assessment and control optimisation of demand response programs in residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    8. Perera, A.T.D. & Nik, Vahid M. & Wickramasinghe, P.U. & Scartezzini, Jean-Louis, 2019. "Redefining energy system flexibility for distributed energy system design," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Natapon Wanapinit & Jessica Thomsen, 2021. "Synergies between Renewable Energy and Flexibility Investments: A Case of a Medium-Sized Industry," Energies, MDPI, vol. 14(22), pages 1-24, November.
    10. Li, Yanxue & Zhang, Xiaoyi & Gao, Weijun & Xu, Wenya & Wang, Zixuan, 2022. "Operational performance and grid-support assessment of distributed flexibility practices among residential prosumers under high PV penetration," Energy, Elsevier, vol. 238(PB).
    11. Fatras, Nicolas & Ma, Zheng & Jørgensen, Bo Nørregaard, 2022. "Process-to-market matrix mapping: A multi-criteria evaluation framework for industrial processes’ electricity market participation feasibility," Applied Energy, Elsevier, vol. 313(C).
    12. Nik, Vahid M. & Moazami, Amin, 2021. "Using collective intelligence to enhance demand flexibility and climate resilience in urban areas," Applied Energy, Elsevier, vol. 281(C).
    13. Stig Ødegaard Ottesen & Martin Haug & Heidi S. Nygård, 2020. "A Framework for Offering Short-Term Demand-Side Flexibility to a Flexibility Marketplace," Energies, MDPI, vol. 13(14), pages 1-17, July.
    14. Xiaoyi Zhang & Weijun Gao & Yanxue Li & Zixuan Wang & Yoshiaki Ushifusa & Yingjun Ruan, 2021. "Operational Performance and Load Flexibility Analysis of Japanese Zero Energy House," IJERPH, MDPI, vol. 18(13), pages 1-19, June.
    15. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    16. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    17. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    18. Ma, Huan & Sun, Qinghan & Chen, Qun & Zhao, Tian & He, Kelun, 2023. "Exergy-based flexibility cost indicator and spatio-temporal coordination principle of distributed multi-energy systems," Energy, Elsevier, vol. 267(C).
    19. Michael Schoepf & Martin Weibelzahl & Lisa Nowka, 2018. "The Impact of Substituting Production Technologies on the Economic Demand Response Potential in Industrial Processes," Energies, MDPI, vol. 11(9), pages 1-13, August.
    20. Roos, Aleksandra & Bolkesjø, Torjus Folsland, 2018. "Value of demand flexibility on spot and reserve electricity markets in future power system with increased shares of variable renewable energy," Energy, Elsevier, vol. 144(C), pages 207-217.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222021466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.