IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v260y2022ics0360544222018084.html
   My bibliography  Save this article

Integration analysis of 3D fractures network reconstruction and frac hits response in shale wells

Author

Listed:
  • Hou, Bing
  • Zhang, Qixing
  • Liu, Xing
  • Pang, Huiwen
  • Zeng, Yue

Abstract

The frac hits affected a drilling platform in the Changning region, Sichuan Basin, China. The microseismic events of the three wells coincided in the adjacent fracturing stages. When the intermediate well fracturing, the production pressure of two adjacent wells decreases, and gas lift occurs. This study first reconstructed the 3D discrete complex fracture network through microseismic events using the local RANSAC algorithm and quantitatively evaluated the interaction and connectivity of hydraulic fracture networks between wells using kernel density estimation. An integrated multi-physical fields model was established under the dual-porosity/dual permeability concept and embedded discrete fracture models, including poroelastic deformation, desorption/adsorption, Knudsen diffusion, and viscous flow. The finding showed that frac hits during the fracturing operations could change the occurrence frequency, moment magnitude, and spatial distribution of microseismic events. The maximum dip direction of hydraulic fracture changed by 53° because of the pore pressure connection. The stress deflexion induced by the old well exploitation inward deflected between 13° and 45°, which means that the hydraulic fractures preferentially would grow asymmetrically and propagate to the pressure depletion zone. This research integrates geology and engineering and can give direct and practical guidance to oilfield fracturing construction, hydraulic fracture monitoring, and gas production.

Suggested Citation

  • Hou, Bing & Zhang, Qixing & Liu, Xing & Pang, Huiwen & Zeng, Yue, 2022. "Integration analysis of 3D fractures network reconstruction and frac hits response in shale wells," Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222018084
    DOI: 10.1016/j.energy.2022.124906
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222018084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Jianming & Li, Xiao & Yin, Chao & Zhang, Yixiang & Lin, Chong, 2020. "Propagation and characterization of the micro cracks induced by hydraulic fracturing in shale," Energy, Elsevier, vol. 191(C).
    2. Tian, Zhenhua & Wei, Wei & Zhou, Shangwen & Sun, Chenhao & Rezaee, Reza & Cai, Jianchao, 2022. "Impacts of gas properties and transport mechanisms on the permeability of shale at pore and core scale," Energy, Elsevier, vol. 244(PA).
    3. Zheng, Peng & Xia, Yucheng & Yao, Tingwei & Jiang, Xu & Xiao, Peiyao & He, Zexuan & Zhou, Desheng, 2022. "Formation mechanisms of hydraulic fracture network based on fracture interaction," Energy, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    2. Chen, Guodong & Luo, Xin & Jiao, Jiu Jimmy & Jiang, Chuanyin, 2023. "Fracture network characterization with deep generative model based stochastic inversion," Energy, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Lei & Wu, Shan & Gao, Ke & Shen, Luming, 2022. "Simultaneous propagation of hydraulic fractures from multiple perforation clusters in layered tight reservoirs: Non-planar three-dimensional modelling," Energy, Elsevier, vol. 254(PC).
    2. Wang, Chongyang & Zhang, Dongming & Liu, Chenxi & Pan, Yisha & Jiang, Zhigang & Yu, Beichen & Lin, Yun, 2023. "Deformation and seepage characteristics of water-saturated shale under true triaxial stress," Energy, Elsevier, vol. 284(C).
    3. Liang, Cun-Guang & Guo, Ze-Shi & Yue, Xiu & Li, Hui & Ma, Peng-Cheng, 2023. "Microwave-assisted breakage of basalt: A viewpoint on analyzing the thermal and mechanical behavior of rock," Energy, Elsevier, vol. 273(C).
    4. Cui, Song & Liu, Songyong & Li, Hongsheng & Zhou, Fangyue & Sun, Dunkai, 2022. "Critical parameters investigation of rock breaking by high-pressure foam fracturing method," Energy, Elsevier, vol. 258(C).
    5. Jiang, Xingwen & Chen, Mian & Li, Qinghui & Liang, Lihao & Zhong, Zhen & Yu, Bo & Wen, Hang, 2022. "Study on the feasibility of the heat treatment after shale gas reservoir hydration fracturing," Energy, Elsevier, vol. 254(PB).
    6. Gou, Qiyang & Xu, Shang & Hao, Fang & Yang, Feng & Shu, Zhiguo & Liu, Rui, 2021. "The effect of tectonic deformation and preservation condition on the shale pore structure using adsorption-based textural quantification and 3D image observation," Energy, Elsevier, vol. 219(C).
    7. Yanjun Zhang & Le Yan & Hongkui Ge & Shun Liu & Desheng Zhou, 2022. "Experimental Study on Connection Characteristics of Rough Fractures Induced by Multi-Stage Hydraulic Fracturing in Tight Reservoirs," Energies, MDPI, vol. 15(7), pages 1-17, March.
    8. Lan, Wenjian & Wang, Hanxiang & Zhang, Xin & Fan, Hongbo & Feng, Kun & Liu, Yanxin & Sun, Bingyu, 2020. "Investigation on the mechanism of micro-cracks generated by microwave heating in coal and rock," Energy, Elsevier, vol. 206(C).
    9. Zhou, Aitao & Li, Jingwen & Gong, Weili & Wang, Kai & Du, Changang, 2023. "Theoretical and numerical study on the contribution of multi-hole arrangement to coalbed methane extraction," Energy, Elsevier, vol. 284(C).
    10. Zheng, Peng & Xia, Yucheng & Yao, Tingwei & Jiang, Xu & Xiao, Peiyao & He, Zexuan & Zhou, Desheng, 2022. "Formation mechanisms of hydraulic fracture network based on fracture interaction," Energy, Elsevier, vol. 243(C).
    11. Micheal, Marembo & Yu, Hao & Meng, SiWei & Xu, WenLong & Huang, HanWei & Huang, MengCheng & Zhang, HouLin & Liu, He & Wu, HengAn, 2023. "Gas production from shale reservoirs with bifurcating fractures: A modified quadruple-domain model coupling microseismic events," Energy, Elsevier, vol. 278(C).
    12. Pahari, Silabrata & Bhandakkar, Parth & Akbulut, Mustafa & Sang-Il Kwon, Joseph, 2021. "Optimal pumping schedule with high-viscosity gel for uniform distribution of proppant in unconventional reservoirs," Energy, Elsevier, vol. 216(C).
    13. Song Wang & Jian Zhou & Luqing Zhang & Zhenhua Han, 2020. "Numerical Investigation of Injection-Induced Fracture Propagation in Brittle Rocks with Two Injection Wells by a Modified Fluid-Mechanical Coupling Model," Energies, MDPI, vol. 13(18), pages 1-26, September.
    14. Lei, Jian & Pan, Baozhi & Guo, Yuhang & Fan, YuFei & Xue, Linfu & Deng, Sunhua & Zhang, Lihua & Ruhan, A., 2021. "A comprehensive analysis of the pyrolysis effects on oil shale pore structures at multiscale using different measurement methods," Energy, Elsevier, vol. 227(C).
    15. Xiaoyu Ju & Xiaodong Zhao & Boyu Zhou & Ruixue Zhang & Xinyu Wu & Dafa Guo, 2023. "Identification of Reservoir Water-Flooding Degrees via Core Sizes Based on a Drip Experiment of the Zhenwu Area in Gaoyou Sag, China," Energies, MDPI, vol. 16(2), pages 1-14, January.
    16. Qiuyang Cheng & Lijun You & Na Jia & Yili Kang & Cheng Chang & Weiyang Xie, 2023. "New Insight into Enhancing Organic-Rich Shale Gas Recovery: Shut-in Performance Increased through Oxidative Fluids," Energies, MDPI, vol. 16(11), pages 1-25, May.
    17. Zhiming Hu & Ying Mu & Qiulei Guo & Wente Niu & Xianggang Duan & Jin Chang & Zhenkai Wu, 2022. "Occurrence and Migration Mechanisms of Methane in Marine Shale Reservoirs," Energies, MDPI, vol. 15(23), pages 1-15, November.
    18. Li, Guoliang & Li, Guanfang & Luo, Chao & Zhou, Runqing & Zhou, Jian & Yang, Jijin, 2023. "Dynamic evolution of shale permeability under coupled temperature and effective stress conditions," Energy, Elsevier, vol. 266(C).
    19. Zhu, Hongjian & Ju, Yiwen & Yang, Manping & Huang, Cheng & Feng, Hongye & Qiao, Peng & Ma, Chao & Su, Xin & Lu, Yanjun & Shi, Erxiu & Han, Jinxuan, 2022. "Grain-scale petrographic evidence for distinguishing detrital and authigenic quartz in shale: How much of a role do they play for reservoir property and mechanical characteristic?," Energy, Elsevier, vol. 239(PC).
    20. Xu, WenLong & Yu, Hao & Micheal, Marembo & Huang, HanWei & Liu, He & Wu, HengAn, 2023. "An integrated model for fracture propagation and production performance of thermal enhanced shale gas recovery," Energy, Elsevier, vol. 263(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222018084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.