IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9043-d988033.html
   My bibliography  Save this article

Occurrence and Migration Mechanisms of Methane in Marine Shale Reservoirs

Author

Listed:
  • Zhiming Hu

    (PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China)

  • Ying Mu

    (Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China)

  • Qiulei Guo

    (School of Earth and Space Sciences, Peking University, Beijing 100871, China)

  • Wente Niu

    (Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China)

  • Xianggang Duan

    (PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China)

  • Jin Chang

    (PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China)

  • Zhenkai Wu

    (PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China)

Abstract

The occurrence mechanism of methane is very important as evaluating the gas-bearing properties of marine shale reservoirs, and the evaluation of the development effect of shale gas wells need to focus on the migration mechanism of methane. In this study, LTNA technology and NMR technology were used to analyze the pores and methane of shale. The results show that inorganic pores have better connectivity, larger pore size, and micro–nano cracks between pores compared to organic pores. Most of the pores in shale are micropores and mesopores, which provide most of the specific surface area, but the contribution of macropores to pore volume cannot be ignored. Adsorbed gas volume depends on the pore surface area and gas pressure, while free gas volume depends on pore volume and gas pressure. The pore structure of micropores and mesopores is complex, and the specific surface area is large. The dispersion force between pore surface molecules and methane molecules is firm, which makes the pore wall an ideal enrichment space for adsorbed gas. Macropores have larger pore volumes and can store more free gas. In the process of gas well development, free gas is first discharged from pores under the action of the pressure gradient. As the pore pressure is lower than the critical desorption pressure, adsorbed gas begins to desorb in large quantities. It should be noted that the desorption process of adsorbed gas is slow and persistent, which makes it impossible for gas wells to achieve higher recovery in a shorter production cycle. Therefore, improving the recovery rate of adsorbed gas is the key to future research on shale gas development effects. This study is helpful in clarifying the occurrence and migration mechanism of methane in marine shale reservoirs and guiding the development of gas wells.

Suggested Citation

  • Zhiming Hu & Ying Mu & Qiulei Guo & Wente Niu & Xianggang Duan & Jin Chang & Zhenkai Wu, 2022. "Occurrence and Migration Mechanisms of Methane in Marine Shale Reservoirs," Energies, MDPI, vol. 15(23), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9043-:d:988033
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9043/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9043/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaiser, Mark J., 2012. "Profitability assessment of Haynesville shale gas wells," Energy, Elsevier, vol. 38(1), pages 315-330.
    2. He, Jianming & Li, Xiao & Yin, Chao & Zhang, Yixiang & Lin, Chong, 2020. "Propagation and characterization of the micro cracks induced by hydraulic fracturing in shale," Energy, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chongyang & Zhang, Dongming & Liu, Chenxi & Pan, Yisha & Jiang, Zhigang & Yu, Beichen & Lin, Yun, 2023. "Deformation and seepage characteristics of water-saturated shale under true triaxial stress," Energy, Elsevier, vol. 284(C).
    2. Liang, Cun-Guang & Guo, Ze-Shi & Yue, Xiu & Li, Hui & Ma, Peng-Cheng, 2023. "Microwave-assisted breakage of basalt: A viewpoint on analyzing the thermal and mechanical behavior of rock," Energy, Elsevier, vol. 273(C).
    3. Cui, Song & Liu, Songyong & Li, Hongsheng & Zhou, Fangyue & Sun, Dunkai, 2022. "Critical parameters investigation of rock breaking by high-pressure foam fracturing method," Energy, Elsevier, vol. 258(C).
    4. Xiaoqian Guo & Qiang Yan & Anjian Wang, 2017. "Assessment of Methods for Forecasting Shale Gas Supply in China Based on Economic Considerations," Energies, MDPI, vol. 10(11), pages 1-14, October.
    5. Chen, Yan & Xu, Jintao & Wang, Pu, 2020. "Shale gas potential in China: A production forecast of the Wufeng-Longmaxi Formation and implications for future development," Energy Policy, Elsevier, vol. 147(C).
    6. Montgomery, J.B. & O’Sullivan, F.M., 2017. "Spatial variability of tight oil well productivity and the impact of technology," Applied Energy, Elsevier, vol. 195(C), pages 344-355.
    7. Jiang, Xingwen & Chen, Mian & Li, Qinghui & Liang, Lihao & Zhong, Zhen & Yu, Bo & Wen, Hang, 2022. "Study on the feasibility of the heat treatment after shale gas reservoir hydration fracturing," Energy, Elsevier, vol. 254(PB).
    8. Gou, Qiyang & Xu, Shang & Hao, Fang & Yang, Feng & Shu, Zhiguo & Liu, Rui, 2021. "The effect of tectonic deformation and preservation condition on the shale pore structure using adsorption-based textural quantification and 3D image observation," Energy, Elsevier, vol. 219(C).
    9. Ikonnikova, Svetlana & Gülen, Gürcan & Browning, John & Tinker, Scott W., 2015. "Profitability of shale gas drilling: A case study of the Fayetteville shale play," Energy, Elsevier, vol. 81(C), pages 382-393.
    10. Evan M. Herrnstadt & Ryan Kellogg & Eric Lewis, 2020. "The Economics of Time-Limited Development Options: The Case of Oil and Gas Leases," Working Papers 2020-66, Becker Friedman Institute for Research In Economics.
    11. Gülen, Gürcan & Browning, John & Ikonnikova, Svetlana & Tinker, Scott W., 2013. "Well economics across ten tiers in low and high Btu (British thermal unit) areas, Barnett Shale, Texas," Energy, Elsevier, vol. 60(C), pages 302-315.
    12. Lan, Wenjian & Wang, Hanxiang & Zhang, Xin & Fan, Hongbo & Feng, Kun & Liu, Yanxin & Sun, Bingyu, 2020. "Investigation on the mechanism of micro-cracks generated by microwave heating in coal and rock," Energy, Elsevier, vol. 206(C).
    13. Zheng, Peng & Xia, Yucheng & Yao, Tingwei & Jiang, Xu & Xiao, Peiyao & He, Zexuan & Zhou, Desheng, 2022. "Formation mechanisms of hydraulic fracture network based on fracture interaction," Energy, Elsevier, vol. 243(C).
    14. Evan Herrnstadt & Ryan Kellogg & Eric Lewis, 2024. "Drilling Deadlines and Oil and Gas Development," Econometrica, Econometric Society, vol. 92(1), pages 29-60, January.
    15. Li, Boying & Zheng, Mingbo & Zhao, Xinxin & Chang, Chun-Ping, 2021. "An assessment of the effect of partisan ideology on shale gas production and the implications for environmental regulations," Economic Systems, Elsevier, vol. 45(3).
    16. Pahari, Silabrata & Bhandakkar, Parth & Akbulut, Mustafa & Sang-Il Kwon, Joseph, 2021. "Optimal pumping schedule with high-viscosity gel for uniform distribution of proppant in unconventional reservoirs," Energy, Elsevier, vol. 216(C).
    17. Yuan, Jiehui & Luo, Dongkun & Xia, Liangyu & Feng, Lianyong, 2015. "Policy recommendations to promote shale gas development in China based on a technical and economic evaluation," Energy Policy, Elsevier, vol. 85(C), pages 194-206.
    18. Song Wang & Jian Zhou & Luqing Zhang & Zhenhua Han, 2020. "Numerical Investigation of Injection-Induced Fracture Propagation in Brittle Rocks with Two Injection Wells by a Modified Fluid-Mechanical Coupling Model," Energies, MDPI, vol. 13(18), pages 1-26, September.
    19. Wang, Hui & Chen, Li & Qu, Zhiguo & Yin, Ying & Kang, Qinjun & Yu, Bo & Tao, Wen-Quan, 2020. "Modeling of multi-scale transport phenomena in shale gas production — A critical review," Applied Energy, Elsevier, vol. 262(C).
    20. Qiuyang Cheng & Lijun You & Na Jia & Yili Kang & Cheng Chang & Weiyang Xie, 2023. "New Insight into Enhancing Organic-Rich Shale Gas Recovery: Shut-in Performance Increased through Oxidative Fluids," Energies, MDPI, vol. 16(11), pages 1-25, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9043-:d:988033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.