IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4718-d411568.html
   My bibliography  Save this article

Numerical Investigation of Injection-Induced Fracture Propagation in Brittle Rocks with Two Injection Wells by a Modified Fluid-Mechanical Coupling Model

Author

Listed:
  • Song Wang

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
    Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China)

  • Jian Zhou

    (Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China)

  • Luqing Zhang

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China)

  • Zhenhua Han

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China)

Abstract

Hydraulic fracturing is a key technical means for stimulating tight and low permeability reservoirs to improve the production, which is widely employed in the development of unconventional energy resources, including shale gas, shale oil, gas hydrate, and dry hot rock. Although significant progress has been made in the simulation of fracturing a single well using two-dimensional Particle Flow Code (PFC2D), the understanding of the multi-well hydraulic fracturing characteristics is still limited. Exploring the mechanisms of fluid-driven fracture initiation, propagation and interaction under multi-well fracturing conditions is of great theoretical significance for creating complex fracture networks in the reservoir. In this study, a series of two-well fracturing simulations by a modified fluid-mechanical coupling algorithm were conducted to systematically investigate the effects of injection sequence and well spacing on breakdown pressure, fracture propagation and stress shadow. The results show that both injection sequence and well spacing make little difference on breakdown pressure but have huge impacts on fracture propagation pressure. Especially under hydrostatic pressure conditions, simultaneous injection and small well spacing increase the pore pressure between two injection wells and reduce the effective stress of rock to achieve lower fracture propagation pressure. The injection sequence can change the propagation direction of hydraulic fractures. When the in-situ stress is hydrostatic pressure, simultaneous injection compels the fractures to deflect and tend to propagate horizontally, which promotes the formation of complex fracture networks between two injection wells. When the maximum in-situ stress is in the horizontal direction, asynchronous injection is more conducive to the parallel propagation of multiple hydraulic fractures. Nevertheless, excessively small or large well spacing reduces the number of fracture branches in fracture networks. In addition, the stress shadow effect is found to be sensitive to both injection sequence and well spacing.

Suggested Citation

  • Song Wang & Jian Zhou & Luqing Zhang & Zhenhua Han, 2020. "Numerical Investigation of Injection-Induced Fracture Propagation in Brittle Rocks with Two Injection Wells by a Modified Fluid-Mechanical Coupling Model," Energies, MDPI, vol. 13(18), pages 1-26, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4718-:d:411568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4718/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4718/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jian Zhou & Luqing Zhang & Anika Braun & Zhenhua Han, 2016. "Numerical Modeling and Investigation of Fluid-Driven Fracture Propagation in Reservoirs Based on a Modified Fluid-Mechanically Coupled Model in Two-Dimensional Particle Flow Code," Energies, MDPI, vol. 9(9), pages 1-19, September.
    2. Lei Zhou & Junchao Chen & Yang Gou & Wentao Feng, 2017. "Numerical Investigation of the Time-Dependent and the Proppant Dominated Stress Shadow Effects in a Transverse Multiple Fracture System and Optimization," Energies, MDPI, vol. 10(1), pages 1-21, January.
    3. He, Jianming & Li, Xiao & Yin, Chao & Zhang, Yixiang & Lin, Chong, 2020. "Propagation and characterization of the micro cracks induced by hydraulic fracturing in shale," Energy, Elsevier, vol. 191(C).
    4. Jian Zhou & Luqing Zhang & Anika Braun & Zhenhua Han, 2017. "Investigation of Processes of Interaction between Hydraulic and Natural Fractures by PFC Modeling Comparing against Laboratory Experiments and Analytical Models," Energies, MDPI, vol. 10(7), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Rezaee, 2022. "Editorial on Special Issues of Development of Unconventional Reservoirs," Energies, MDPI, vol. 15(7), pages 1-9, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chongyang & Zhang, Dongming & Liu, Chenxi & Pan, Yisha & Jiang, Zhigang & Yu, Beichen & Lin, Yun, 2023. "Deformation and seepage characteristics of water-saturated shale under true triaxial stress," Energy, Elsevier, vol. 284(C).
    2. Weige Han & Zhendong Cui & Zhengguo Zhu & Xianmin Han, 2022. "The Effect of Bedding Plane Angle on Hydraulic Fracture Propagation in Mineral Heterogeneity Model," Energies, MDPI, vol. 15(16), pages 1-18, August.
    3. Liang, Cun-Guang & Guo, Ze-Shi & Yue, Xiu & Li, Hui & Ma, Peng-Cheng, 2023. "Microwave-assisted breakage of basalt: A viewpoint on analyzing the thermal and mechanical behavior of rock," Energy, Elsevier, vol. 273(C).
    4. Cui, Song & Liu, Songyong & Li, Hongsheng & Zhou, Fangyue & Sun, Dunkai, 2022. "Critical parameters investigation of rock breaking by high-pressure foam fracturing method," Energy, Elsevier, vol. 258(C).
    5. Jiang, Xingwen & Chen, Mian & Li, Qinghui & Liang, Lihao & Zhong, Zhen & Yu, Bo & Wen, Hang, 2022. "Study on the feasibility of the heat treatment after shale gas reservoir hydration fracturing," Energy, Elsevier, vol. 254(PB).
    6. Haijun Zhao & Dwayne D. Tannant & Fengshan Ma & Jie Guo & Xuelei Feng, 2019. "Investigation of Hydraulic Fracturing Behavior in Heterogeneous Laminated Rock Using a Micromechanics-Based Numerical Approach," Energies, MDPI, vol. 12(18), pages 1-21, September.
    7. Gou, Qiyang & Xu, Shang & Hao, Fang & Yang, Feng & Shu, Zhiguo & Liu, Rui, 2021. "The effect of tectonic deformation and preservation condition on the shale pore structure using adsorption-based textural quantification and 3D image observation," Energy, Elsevier, vol. 219(C).
    8. Lan, Wenjian & Wang, Hanxiang & Zhang, Xin & Fan, Hongbo & Feng, Kun & Liu, Yanxin & Sun, Bingyu, 2020. "Investigation on the mechanism of micro-cracks generated by microwave heating in coal and rock," Energy, Elsevier, vol. 206(C).
    9. Zheng, Peng & Xia, Yucheng & Yao, Tingwei & Jiang, Xu & Xiao, Peiyao & He, Zexuan & Zhou, Desheng, 2022. "Formation mechanisms of hydraulic fracture network based on fracture interaction," Energy, Elsevier, vol. 243(C).
    10. Pahari, Silabrata & Bhandakkar, Parth & Akbulut, Mustafa & Sang-Il Kwon, Joseph, 2021. "Optimal pumping schedule with high-viscosity gel for uniform distribution of proppant in unconventional reservoirs," Energy, Elsevier, vol. 216(C).
    11. Zhenhua Han & Jian Zhou & Luqing Zhang, 2018. "Influence of Grain Size Heterogeneity and In-Situ Stress on the Hydraulic Fracturing Process by PFC 2D Modeling," Energies, MDPI, vol. 11(6), pages 1-14, June.
    12. Andrzej Rogala & Karolina Kucharska & Jan Hupka, 2019. "Shales Leaching Modelling for Prediction of Flowback Fluid Composition," Energies, MDPI, vol. 12(7), pages 1-21, April.
    13. Qiuyang Cheng & Lijun You & Na Jia & Yili Kang & Cheng Chang & Weiyang Xie, 2023. "New Insight into Enhancing Organic-Rich Shale Gas Recovery: Shut-in Performance Increased through Oxidative Fluids," Energies, MDPI, vol. 16(11), pages 1-25, May.
    14. Zhiming Hu & Ying Mu & Qiulei Guo & Wente Niu & Xianggang Duan & Jin Chang & Zhenkai Wu, 2022. "Occurrence and Migration Mechanisms of Methane in Marine Shale Reservoirs," Energies, MDPI, vol. 15(23), pages 1-15, November.
    15. Hongjian Wang & Wanlin Gong & Guangxiang Yuan & Xiaodong Wang & Jitao Zhao & Yujie Su & Yuchen Wang, 2022. "Effect of In-Situ Stress on Hydraulic Fracturing of Tight Sandstone Based on Discrete Element Method," Energies, MDPI, vol. 15(15), pages 1-13, August.
    16. Yang, Lei & Wu, Shan & Gao, Ke & Shen, Luming, 2022. "Simultaneous propagation of hydraulic fractures from multiple perforation clusters in layered tight reservoirs: Non-planar three-dimensional modelling," Energy, Elsevier, vol. 254(PC).
    17. Jian Zhou & Luqing Zhang & Anika Braun & Zhenhua Han, 2017. "Investigation of Processes of Interaction between Hydraulic and Natural Fractures by PFC Modeling Comparing against Laboratory Experiments and Analytical Models," Energies, MDPI, vol. 10(7), pages 1-18, July.
    18. Lei, Jian & Pan, Baozhi & Guo, Yuhang & Fan, YuFei & Xue, Linfu & Deng, Sunhua & Zhang, Lihua & Ruhan, A., 2021. "A comprehensive analysis of the pyrolysis effects on oil shale pore structures at multiscale using different measurement methods," Energy, Elsevier, vol. 227(C).
    19. Hou, Bing & Zhang, Qixing & Liu, Xing & Pang, Huiwen & Zeng, Yue, 2022. "Integration analysis of 3D fractures network reconstruction and frac hits response in shale wells," Energy, Elsevier, vol. 260(C).
    20. Xu Yang & Boyun Guo & Xiaohui Zhang, 2019. "An Analytical Model for Capturing the Decline of Fracture Conductivity in the Tuscaloosa Marine Shale Trend from Production Data," Energies, MDPI, vol. 12(10), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4718-:d:411568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.