IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipbs0360544222012695.html
   My bibliography  Save this article

Thermo-electro-hydraulic analysis of jet impingement bifacial photovoltaic thermal (JIBPVT) solar air collector

Author

Listed:
  • Ewe, Win Eng
  • Fudholi, Ahmad
  • Sopian, Kamaruzzaman
  • Moshery, Refat
  • Asim, Nilofar
  • Nuriana, Wahidin
  • Ibrahim, Adnan

Abstract

The effects of impinging air jet on the thermo-electro-hydraulic performance of a bifacial PVT with different packing factors are entirely unclear. Here, we have proposed a dual-functional jet plate reflectors are introduced to induce jet air cooling and increase the light absorption at the rear part of the bifacial PV module. The effects of jet plate reflectors with different configurations on the system's performance are investigated and studied. The simulation results were verified and validated with the experimental findings. Increasing the distance between jet holes reduces the interference and enhances the heat transfer, which led to higher friction and greater pumping power. Net energy gain is the key to calculate hydraulic efficiency, by subtracting the pumping power from the energy output. Therefore, the system's best performance can be explained by the lowest Re to generate max efficiencies. Jet impingement bifacial photovoltaic thermal (JIBPVT) with 36 jet-holes has the greatest jet spacing between the jet holes and optimum performance. The maximum thermal energy gain and electrical energy produced were achieved at lower critical values of Re, which are 9929 and 5667, respectively. JIBPVT has the optimum thermal, electro, and thermo-electro-hydraulic efficiencies, with 57.3%, 10.36%, and 83.93%, respectively.

Suggested Citation

  • Ewe, Win Eng & Fudholi, Ahmad & Sopian, Kamaruzzaman & Moshery, Refat & Asim, Nilofar & Nuriana, Wahidin & Ibrahim, Adnan, 2022. "Thermo-electro-hydraulic analysis of jet impingement bifacial photovoltaic thermal (JIBPVT) solar air collector," Energy, Elsevier, vol. 254(PB).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222012695
    DOI: 10.1016/j.energy.2022.124366
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222012695
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124366?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karwa, Rajendra & Garg, S.N. & Arya, A.K., 2002. "Thermo-hydraulic performance of a solar air heater with n-subcollectors in series and parallel configuration," Energy, Elsevier, vol. 27(9), pages 807-812.
    2. Ooshaksaraei, Poorya & Sopian, Kamaruzzaman & Zaidi, Saleem H. & Zulkifli, Rozli, 2017. "Performance of four air-based photovoltaic thermal collectors configurations with bifacial solar cells," Renewable Energy, Elsevier, vol. 102(PB), pages 279-293.
    3. Sun, Xingshu & Khan, Mohammad Ryyan & Deline, Chris & Alam, Muhammad Ashraful, 2018. "Optimization and performance of bifacial solar modules: A global perspective," Applied Energy, Elsevier, vol. 212(C), pages 1601-1610.
    4. Hasan, Husam Abdulrasool & Sopian, Kamaruzzaman & Fudholi, Ahmad, 2018. "Photovoltaic thermal solar water collector designed with a jet collision system," Energy, Elsevier, vol. 161(C), pages 412-424.
    5. Karwa, Rajendra & Chauhan, Kalpana, 2010. "Performance evaluation of solar air heaters having v-down discrete rib roughness on the absorber plate," Energy, Elsevier, vol. 35(1), pages 398-409.
    6. Chauhan, Ranchan & Thakur, N.S., 2014. "Investigation of the thermohydraulic performance of impinging jet solar air heater," Energy, Elsevier, vol. 68(C), pages 255-261.
    7. Cortés, A. & Piacentini, R., 1990. "Improvement of the efficiency of a bare solar collector by means of turbulence promoters," Applied Energy, Elsevier, vol. 36(4), pages 253-261.
    8. Chauhan, Ranchan & Singh, Tej & Thakur, N.S. & Patnaik, Amar, 2016. "Optimization of parameters in solar thermal collector provided with impinging air jets based upon preference selection index method," Renewable Energy, Elsevier, vol. 99(C), pages 118-126.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chauhan, Ranchan & Singh, Tej & Thakur, N.S. & Kumar, Nitin & Kumar, Raj & Kumar, Anil, 2018. "Heat transfer augmentation in solar thermal collectors using impinging air jets: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3179-3190.
    2. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Chauhan, Ranchan & Thakur, N.S., 2014. "Investigation of the thermohydraulic performance of impinging jet solar air heater," Energy, Elsevier, vol. 68(C), pages 255-261.
    4. Karwa, Rajendra & Chauhan, Kalpana, 2010. "Performance evaluation of solar air heaters having v-down discrete rib roughness on the absorber plate," Energy, Elsevier, vol. 35(1), pages 398-409.
    5. Salman, Mohammad & Chauhan, Ranchan & Poongavanam, Ganesh Kumar & Kim, Sung Chul, 2022. "Analytical investigation of jet impingement solar air heater with dimple-roughened absorber surface via thermal and effective analysis," Renewable Energy, Elsevier, vol. 199(C), pages 1248-1257.
    6. Karwa, Rajendra & Chitoshiya, Girish, 2013. "Performance study of solar air heater having v-down discrete ribs on absorber plate," Energy, Elsevier, vol. 55(C), pages 939-955.
    7. Sharma, Ashutosh & Chauhan, Ranchan & Singh, Tej & Kumar, Anil & Kumar, Raj & Kumar, Anil & Sethi, Muneesh, 2017. "Optimizing discrete V obstacle parameters using a novel Entropy-VIKOR approach in a solar air flow channel," Renewable Energy, Elsevier, vol. 106(C), pages 310-320.
    8. Tewari, Kirti & Dev, Rahul, 2019. "Exergy, environmental and economic analysis of modified domestic solar water heater with glass-to-glass PV module," Energy, Elsevier, vol. 170(C), pages 1130-1150.
    9. Chauhan, Ranchan & Singh, Tej & Tiwari, Avinash & Patnaik, Amar & Thakur, N.S., 2017. "Hybrid entropy – TOPSIS approach for energy performance prioritization in a rectangular channel employing impinging air jets," Energy, Elsevier, vol. 134(C), pages 360-368.
    10. Yao, Jian & Dou, Pengbo & Zheng, Sihang & Zhao, Yao & Dai, Yanjun & Zhu, Junjie & Novakovic, Vojislav, 2022. "Co-generation ability investigation of the novel structured PVT heat pump system and its effect on the “Carbon neutral” strategy of Shanghai," Energy, Elsevier, vol. 239(PA).
    11. Katsaounis, Th. & Kotsovos, K. & Gereige, I. & Basaheeh, A. & Abdullah, M. & Khayat, A. & Al-Habshi, E. & Al-Saggaf, A. & Tzavaras, A.E., 2019. "Performance assessment of bifacial c-Si PV modules through device simulations and outdoor measurements," Renewable Energy, Elsevier, vol. 143(C), pages 1285-1298.
    12. Chaurasiya, Shailendra Kumar & Singh, Satyender, 2023. "High thermal performance of the solar air heater designs triggered by improved jet stability," Renewable Energy, Elsevier, vol. 204(C), pages 532-545.
    13. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    14. Chauhan, Ranchan & Kim, Sung Chul, 2019. "Effective efficiency distribution characteristics in protruded/dimpled-arc plate solar thermal collector," Renewable Energy, Elsevier, vol. 138(C), pages 955-963.
    15. Poddar, V.S. & Ranawade, V.A. & Dhokey, N.B., 2022. "Study of synergy between photovoltaic, thermoelectric and direct evaporative cooling system for improved performance," Renewable Energy, Elsevier, vol. 182(C), pages 817-826.
    16. Johnson, Joji & Manikandan, S., 2023. "Experimental study and model development of bifacial photovoltaic power plants for Indian climatic zones," Energy, Elsevier, vol. 284(C).
    17. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    18. Tao, Yunkun & Bai, Jianbo & Pachauri, Rupendra Kumar & Wang, Yue & Li, Jian & Attaher, Harouna Kerzika, 2021. "Parameterizing mismatch loss in bifacial photovoltaic modules with global deployment: A comprehensive study," Applied Energy, Elsevier, vol. 303(C).
    19. Singh Bisht, Vijay & Kumar Patil, Anil & Gupta, Anirudh, 2018. "Review and performance evaluation of roughened solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 954-977.
    20. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222012695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.