IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v253y2022ics0360544222010519.html
   My bibliography  Save this article

A novel mode for “three zones” collaborative reconstruction of underground gas storage and its application to large, low-permeability lithologic gas reservoirs

Author

Listed:
  • Wang, Jieming
  • Wang, Jinkai
  • Xu, Shujuan
  • Wu, Rui
  • Lv, Jian
  • Li, Zhi
  • Li, Chun
  • Zhang, Jinliang
  • Zhao, Lei
  • Xie, Jun
  • Zhang, Jianguo

Abstract

The difficult of reconstruction area selection, the unclear closed boundary and the low injection-production efficiency are the main problems restricting the gas storage reconstruction in large-scale low-permeability lithologic gas reservoir. In view of this, this paper proposes a new ‘three zones' cooperative building model which can provide a comprehensive selecting standard, delimit a stable closed boundary and optimize an efficient operation mode for the successful reconstruction of gas storage in this type of gas reservoir. Its application will create a precedent for the gas storage reconstruction in low-permeability gas reservoir and bring huge economic benefits. First, the multi-parameter comprehensive index evaluation rule of the reservoir under the constraint of “five facies” is established, and the overflow mode and volume of gas in the core area are calculated to define the reasonable range of the ‘three zones'. Subsequently, a mathematical model of fluid exchange between different zones under the new model is established to simulate and predict the dynamic indexes and fluid migration law in different zones. Finally, the operation safety of the gas storage is evaluated, and the applicability and advantage of the new model is confirmed.

Suggested Citation

  • Wang, Jieming & Wang, Jinkai & Xu, Shujuan & Wu, Rui & Lv, Jian & Li, Zhi & Li, Chun & Zhang, Jinliang & Zhao, Lei & Xie, Jun & Zhang, Jianguo, 2022. "A novel mode for “three zones” collaborative reconstruction of underground gas storage and its application to large, low-permeability lithologic gas reservoirs," Energy, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222010519
    DOI: 10.1016/j.energy.2022.124148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222010519
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chadwick, R.A & Zweigel, P & Gregersen, U & Kirby, G.A & Holloway, S & Johannessen, P.N, 2004. "Geological reservoir characterization of a CO2 storage site: The Utsira Sand, Sleipner, northern North Sea," Energy, Elsevier, vol. 29(9), pages 1371-1381.
    2. Yong Geng & Yiming Wei & Manfred Fischedick & Lynn Price & Anthony Chiu & Bin Chen (ed.), 2016. "Recent trend of industrial emissions in developing countries," CEEP-BIT Books, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology, number b14, december.
    3. Jinkai Wang & Hengyi Liu & Jinliang Zhang & Jun Xie, 2018. "Lost Gas Mechanism and Quantitative Characterization during Injection and Production of Water-Flooded Sandstone Underground Gas Storage," Energies, MDPI, vol. 11(2), pages 1-26, January.
    4. Li, Sheng & Gao, Lin & Jin, Hongguang, 2017. "Realizing low life cycle energy use and GHG emissions in coal based polygeneration with CO2 capture," Applied Energy, Elsevier, vol. 194(C), pages 161-171.
    5. Wang, Jinkai & Feng, Xiaoyong & Wanyan, Qiqi & Zhao, Kai & Wang, Ziji & Pei, Gen & Xie, Jun & Tian, Bo, 2022. "Hysteresis effect of three-phase fluids in the high-intensity injection–production process of sandstone underground gas storages," Energy, Elsevier, vol. 242(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ziheng & Mei, Guoxiong & Wu, Zhiwen & Hou, Senlei & He, Sihong & Ding, Jianzhao, 2023. "Experimental investigation on the oil permeation mechanism of underwater oil storage method with flexible oil bladder," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jinkai & Feng, Xiaoyong & Wanyan, Qiqi & Zhao, Kai & Wang, Ziji & Pei, Gen & Xie, Jun & Tian, Bo, 2022. "Hysteresis effect of three-phase fluids in the high-intensity injection–production process of sandstone underground gas storages," Energy, Elsevier, vol. 242(C).
    2. Hu, Yi & Yin, Zhifeng & Ma, Jian & Du, Wencui & Liu, Danhe & Sun, Luxi, 2017. "Determinants of GHG emissions for a municipal economy: Structural decomposition analysis of Chongqing," Applied Energy, Elsevier, vol. 196(C), pages 162-169.
    3. Ghomian, Yousef & Pope, Gary A. & Sepehrnoori, Kamy, 2008. "Reservoir simulation of CO2 sequestration pilot in Frio brine formation, USA Gulf Coast," Energy, Elsevier, vol. 33(7), pages 1055-1067.
    4. Labus, Krzysztof & Bujok, Petr, 2011. "CO2 mineral sequestration mechanisms and capacity of saline aquifers of the Upper Silesian Coal Basin (Central Europe) - Modeling and experimental verification," Energy, Elsevier, vol. 36(8), pages 4974-4982.
    5. Wang, Dandan & Li, Sheng & Liu, Feng & Gao, Lin & Sui, Jun, 2018. "Post combustion CO2 capture in power plant using low temperature steam upgraded by double absorption heat transformer," Applied Energy, Elsevier, vol. 227(C), pages 603-612.
    6. R. Andrew Chadwick & David J. Noy, 2015. "Underground CO2 storage: demonstrating regulatory conformance by convergence of history‐matched modeled and observed CO2 plume behavior using Sleipner time‐lapse seismics," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(3), pages 305-322, June.
    7. Zhang, Xiaowen & Zhang, Xin & Liu, Helei & Li, Wensheng & Xiao, Min & Gao, Hongxia & Liang, Zhiwu, 2017. "Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts," Applied Energy, Elsevier, vol. 202(C), pages 673-684.
    8. Zhu, Lin & He, Yangdong & Li, Luling & Lv, Liping & He, Jingling, 2018. "Thermodynamic assessment of SNG and power polygeneration with the goal of zero CO2 emission," Energy, Elsevier, vol. 149(C), pages 34-46.
    9. Nadiia Charkovska & Mariia Halushchak & Rostyslav Bun & Zbigniew Nahorski & Tomohiro Oda & Matthias Jonas & Petro Topylko, 2019. "A high-definition spatially explicit modelling approach for national greenhouse gas emissions from industrial processes: reducing the errors and uncertainties in global emission modelling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 907-939, August.
    10. Huang, Yi & Yi, Qun & Wei, Guo-qiang & Kang, Jing-xian & Li, Wen-ying & Feng, Jie & Xie, Ke-chang, 2018. "Energy use, greenhouse gases emission and cost effectiveness of an integrated high– and low–temperature Fisher–Tropsch synthesis plant from a lifecycle viewpoint," Applied Energy, Elsevier, vol. 228(C), pages 1009-1019.
    11. Ali Saleh Bairq, Zain & Gao, Hongxia & Huang, Yufei & Zhang, Haiyan & Liang, Zhiwu, 2019. "Enhancing CO2 desorption performance in rich MEA solution by addition of SO42−/ZrO2/SiO2 bifunctional catalyst," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Wu, Handong & Gao, Lin & Jin, Hongguang & Li, Sheng, 2017. "Low-energy-penalty principles of CO2 capture in polygeneration systems," Applied Energy, Elsevier, vol. 203(C), pages 571-581.
    13. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    14. Singh, A.K. & Goerke, U.-J. & Kolditz, O., 2011. "Numerical simulation of non-isothermal compositional gas flow: Application to carbon dioxide injection into gas reservoirs," Energy, Elsevier, vol. 36(5), pages 3446-3458.
    15. Wang, Xiaoqing & Qin, Chuan & Liu, Yufeng & Tanasescu, Cristina & Bao, Jiangnan, 2023. "Emerging enablers of green low-carbon development: Do digital economy and open innovation matter?," Energy Economics, Elsevier, vol. 127(PA).
    16. Pham, V.T.H. & Riis, F. & Gjeldvik, I.T. & Halland, E.K. & Tappel, I.M. & Aagaard, P., 2013. "Assessment of CO2 injection into the south Utsira-Skade aquifer, the North Sea, Norway," Energy, Elsevier, vol. 55(C), pages 529-540.
    17. Wang, Yuan & Zhang, Chen & Lu, Aitong & Li, Li & He, Yanmin & ToJo, Junji & Zhu, Xiaodong, 2017. "A disaggregated analysis of the environmental Kuznets curve for industrial CO2 emissions in China," Applied Energy, Elsevier, vol. 190(C), pages 172-180.
    18. Mengqi Wang & Jun Xie & Fajun Guo & Yawei Zhou & Xudong Yang & Ziang Meng, 2020. "Determination of NMR T 2 Cutoff and CT Scanning for Pore Structure Evaluation in Mixed Siliciclastic–Carbonate Rocks before and after Acidification," Energies, MDPI, vol. 13(6), pages 1-29, March.
    19. Alessia Spada & Mariantonietta Fiore & Umberto Monarca & Nicola Faccilongo, 2019. "R&D Expenditure for New Technology in Livestock Farming: Impact on GHG Reduction in Developing Countries," Sustainability, MDPI, vol. 11(24), pages 1-12, December.
    20. Alshammari, Yousef M., 2021. "Scenario analysis for energy transition in the chemical industry: An industrial case study in Saudi Arabia," Energy Policy, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222010519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.