IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v251y2022ics0360544222007939.html
   My bibliography  Save this article

Weight optimized unscented Kalman filter for degradation trend prediction of lithium-ion battery with error compensation strategy

Author

Listed:
  • Zhang, Yong
  • Tu, Lei
  • Xue, Zhiwei
  • Li, Sai
  • Tian, Lulu
  • Zheng, Xiujuan

Abstract

Due to the inevitable degradation of Lithium-ion batteries (LIBs) during its lifetime, remaining useful life (RUL) prediction methods are adopted for ensuring the stable and safety operation of electrical equipment. To make up the deficiencies of single model-based or data-driven prediction approach, this paper proposes a new hybrid framework using a weight optimization unscented Kalman filter (WOUKF) and attention based bi-directional long short-term memory (BiLSTM-AM). To be specific, firstly, a Fourier model is proposed to describe the degradation of LIBs instead of the traditional double exponential model. Then, a WOUKF algorithm is designed to identify the model parameters efficiently even in the case of poor initialization. Next, the trends of prediction residual between the WOUKF and the true capacity is established by BiLSTM-AM, which is fed back to the WOUKF for updating model parameters during the prediction period. In addition, an error compensation scheme is developed to further improve prediction performance. Finally, the effectiveness of the proposed prognosis framework is verified on two battery datasets. The simulation results show that the proposed method has better prediction accuracy. The maximum root mean squared error (RMSE) and mean absolute error (MAE) of the proposed hybrid framework are 3.5% and 3%, respectively.

Suggested Citation

  • Zhang, Yong & Tu, Lei & Xue, Zhiwei & Li, Sai & Tian, Lulu & Zheng, Xiujuan, 2022. "Weight optimized unscented Kalman filter for degradation trend prediction of lithium-ion battery with error compensation strategy," Energy, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:energy:v:251:y:2022:i:c:s0360544222007939
    DOI: 10.1016/j.energy.2022.123890
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222007939
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123890?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Guijun & Zhang, Yong & Cheng, Cheng & Zhou, Beitong & Hu, Pengchao & Yuan, Ye, 2019. "Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Eleftheroglou, Nick & Mansouri, Sina Sharif & Loutas, Theodoros & Karvelis, Petros & Georgoulas, George & Nikolakopoulos, George & Zarouchas, Dimitrios, 2019. "Intelligent data-driven prognostic methodologies for the real-time remaining useful life until the end-of-discharge estimation of the Lithium-Polymer batteries of unmanned aerial vehicles with uncerta," Applied Energy, Elsevier, vol. 254(C).
    3. Zheng, Xiujuan & Fang, Huajing, 2015. "An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 74-82.
    4. Lin, Chun-Pang & Cabrera, Javier & Yang, Fangfang & Ling, Man-Ho & Tsui, Kwok-Leung & Bae, Suk-Joo, 2020. "Battery state of health modeling and remaining useful life prediction through time series model," Applied Energy, Elsevier, vol. 275(C).
    5. Li, Sai & Fang, Huajing & Shi, Bing, 2021. "Remaining useful life estimation of Lithium-ion battery based on interacting multiple model particle filter and support vector regression," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    6. Hang Geng & Hongjian Liu & Lifeng Ma & Xiaojian Yi, 2021. "Multi-sensor filtering fusion meets censored measurements under a constrained network environment: advances, challenges and prospects," International Journal of Systems Science, Taylor & Francis Journals, vol. 52(16), pages 3410-3436, December.
    7. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    8. Xu, Xin & Chen, Nan, 2017. "A state-space-based prognostics model for lithium-ion battery degradation," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 47-57.
    9. Jingyang Mao & Ying Sun & Xiaojian Yi & Hongjian Liu & Derui Ding, 2021. "Recursive filtering of networked nonlinear systems: a survey," International Journal of Systems Science, Taylor & Francis Journals, vol. 52(6), pages 1110-1128, April.
    10. Chang, Yang & Fang, Huajing & Zhang, Yong, 2017. "A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery," Applied Energy, Elsevier, vol. 206(C), pages 1564-1578.
    11. Yamei Ju & Xin Tian & Hongjian Liu & Lifeng Ma, 2021. "Fault detection of networked dynamical systems: a survey of trends and techniques," International Journal of Systems Science, Taylor & Francis Journals, vol. 52(16), pages 3390-3409, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
    2. Xie, Qilong & Liu, Rongchuan & Huang, Jihao & Su, Jianhui, 2023. "Residual life prediction of lithium-ion batteries based on data preprocessing and a priori knowledge-assisted CNN-LSTM," Energy, Elsevier, vol. 281(C).
    3. Pang, Hui & Chen, Kaiqiang & Geng, Yuanfei & Wu, Longxing & Wang, Fengbin & Liu, Jiahao, 2024. "Accurate capacity and remaining useful life prediction of lithium-ion batteries based on improved particle swarm optimization and particle filter," Energy, Elsevier, vol. 293(C).
    4. Liyuan Shao & Yong Zhang & Xiujuan Zheng & Xin He & Yufeng Zheng & Zhiwei Liu, 2023. "A Review of Remaining Useful Life Prediction for Energy Storage Components Based on Stochastic Filtering Methods," Energies, MDPI, vol. 16(3), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Yang, Yixin, 2021. "A machine-learning prediction method of lithium-ion battery life based on charge process for different applications," Applied Energy, Elsevier, vol. 292(C).
    3. Semeraro, Concetta & Caggiano, Mariateresa & Olabi, Abdul-Ghani & Dassisti, Michele, 2022. "Battery monitoring and prognostics optimization techniques: Challenges and opportunities," Energy, Elsevier, vol. 255(C).
    4. Nagulapati, Vijay Mohan & Lee, Hyunjun & Jung, DaWoon & Brigljevic, Boris & Choi, Yunseok & Lim, Hankwon, 2021. "Capacity estimation of batteries: Influence of training dataset size and diversity on data driven prognostic models," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Hong, Joonki & Lee, Dongheon & Jeong, Eui-Rim & Yi, Yung, 2020. "Towards the swift prediction of the remaining useful life of lithium-ion batteries with end-to-end deep learning," Applied Energy, Elsevier, vol. 278(C).
    6. Chen, Dinghong & Zhang, Weige & Zhang, Caiping & Sun, Bingxiang & Cong, XinWei & Wei, Shaoyuan & Jiang, Jiuchun, 2022. "A novel deep learning-based life prediction method for lithium-ion batteries with strong generalization capability under multiple cycle profiles," Applied Energy, Elsevier, vol. 327(C).
    7. Wang, Shunli & Fan, Yongcun & Jin, Siyu & Takyi-Aninakwa, Paul & Fernandez, Carlos, 2023. "Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Liyuan Shao & Yong Zhang & Xiujuan Zheng & Xin He & Yufeng Zheng & Zhiwei Liu, 2023. "A Review of Remaining Useful Life Prediction for Energy Storage Components Based on Stochastic Filtering Methods," Energies, MDPI, vol. 16(3), pages 1-22, February.
    9. Dai, Haifeng & Jiang, Bo & Hu, Xiaosong & Lin, Xianke & Wei, Xuezhe & Pecht, Michael, 2021. "Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Pang, Hui & Chen, Kaiqiang & Geng, Yuanfei & Wu, Longxing & Wang, Fengbin & Liu, Jiahao, 2024. "Accurate capacity and remaining useful life prediction of lithium-ion batteries based on improved particle swarm optimization and particle filter," Energy, Elsevier, vol. 293(C).
    11. Lee, Jaewook & Lee, Jay H., 2024. "Simultaneous extraction of intra- and inter-cycle features for predicting lithium-ion battery's knees using convolutional and recurrent neural networks," Applied Energy, Elsevier, vol. 356(C).
    12. Kurucan, Mehmet & Özbaltan, Mete & Yetgin, Zeki & Alkaya, Alkan, 2024. "Applications of artificial neural network based battery management systems: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    13. Liu, Dan & Wang, Zidong & Liu, Yurong & Xue, Changfeng & Alsaadi, Fuad E., 2023. "Distributed Recursive Filtering for Time-Varying Systems with Dynamic Bias over Sensor Networks: Tackling Packet Disorders," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    14. Ma, Guijun & Zhang, Yong & Cheng, Cheng & Zhou, Beitong & Hu, Pengchao & Yuan, Ye, 2019. "Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Cao, Mengda & Zhang, Tao & Liu, Yajie & Zhang, Yajun & Wang, Yu & Li, Kaiwen, 2022. "An ensemble learning prognostic method for capacity estimation of lithium-ion batteries based on the V-IOWGA operator," Energy, Elsevier, vol. 257(C).
    16. Li, Penghua & Zhang, Zijian & Grosu, Radu & Deng, Zhongwei & Hou, Jie & Rong, Yujun & Wu, Rui, 2022. "An end-to-end neural network framework for state-of-health estimation and remaining useful life prediction of electric vehicle lithium batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    17. Shaheer Ansari & Afida Ayob & Molla Shahadat Hossain Lipu & Aini Hussain & Mohamad Hanif Md Saad, 2021. "Data-Driven Remaining Useful Life Prediction for Lithium-Ion Batteries Using Multi-Charging Profile Framework: A Recurrent Neural Network Approach," Sustainability, MDPI, vol. 13(23), pages 1-25, December.
    18. Xiaodong Xu & Chuanqiang Yu & Shengjin Tang & Xiaoyan Sun & Xiaosheng Si & Lifeng Wu, 2019. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect," Energies, MDPI, vol. 12(9), pages 1-17, May.
    19. Zhao, Bo & Zhang, Weige & Zhang, Yanru & Zhang, Caiping & Zhang, Chi & Zhang, Junwei, 2024. "Research on the remaining useful life prediction method for lithium-ion batteries by fusion of feature engineering and deep learning," Applied Energy, Elsevier, vol. 358(C).
    20. Tang, Ting & Yuan, Huimei, 2022. "A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:251:y:2022:i:c:s0360544222007939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.