IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v24y1999i4p285-296.html
   My bibliography  Save this article

A study on wood gasification for low-tar gas production

Author

Listed:
  • Bhattacharya, S.C
  • Mizanur Rahman Siddique, A.H.Md
  • Pham, Hoang-Luong

Abstract

We present results of an experimental study on two-stage wood gasification and attempts to reduce the tar content of the gas. Increasing the wood-chip moisture content resulted in an increase of CO2 and H2 but a decrease of the CO concentration without significantly affecting the tar content in the producer gas. For a particular primary air flow rate, an increase in the secondary air flow of the two-stage gasifier resulted in decrease of the tar content and the CO2 and H2 concentrations while that of CO increased. A charcoal gasifier and a floating-drum gas-storage system were coupled to a two-stage wood gasifier. The tar content of the product gas was in the range 19–34 mg/Nm3 for a charcoal gasifier coupled to a two-stage wood gasifier. With a floating-drum gas-storage system and a 3.5 h retention time, the tar content was reduced to 9.24 mg/Nm3, which is 85% less than that obtained by using the a two-stage wood gasifier alone.

Suggested Citation

  • Bhattacharya, S.C & Mizanur Rahman Siddique, A.H.Md & Pham, Hoang-Luong, 1999. "A study on wood gasification for low-tar gas production," Energy, Elsevier, vol. 24(4), pages 285-296.
  • Handle: RePEc:eee:energy:v:24:y:1999:i:4:p:285-296
    DOI: 10.1016/S0360-5442(98)00091-7
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544298000917
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(98)00091-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Wei & Annamalai, Kalyan & Ansley, R. James & Mirik, Mustafa, 2012. "Updraft fixed bed gasification of mesquite and juniper wood samples," Energy, Elsevier, vol. 41(1), pages 454-461.
    2. Rahman, Md Mashiur & Aravindakshan, Sreejith & Matin, Md Abdul, 2021. "Design and performance evaluation of an inclined nozzle and combustor of a downdraft moving bed gasifier for tar reduction," Renewable Energy, Elsevier, vol. 172(C), pages 239-250.
    3. Radenahmad, Nikdalila & Azad, Atia Tasfiah & Saghir, Muhammad & Taweekun, Juntakan & Bakar, Muhammad Saifullah Abu & Reza, Md Sumon & Azad, Abul Kalam, 2020. "A review on biomass derived syngas for SOFC based combined heat and power application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Raman, P. & Ram, N.K. & Gupta, Ruchi, 2013. "A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis," Energy, Elsevier, vol. 54(C), pages 302-314.
    5. Raman, P. & Ram, N.K., 2013. "Performance analysis of an internal combustion engine operated on producer gas, in comparison with the performance of the natural gas and diesel engines," Energy, Elsevier, vol. 63(C), pages 317-333.
    6. Csaba Fogarassy & Laszlo Toth & Marton Czikkely & David Christian Finger, 2019. "Improving the Efficiency of Pyrolysis and Increasing the Quality of Gas Production through Optimization of Prototype Systems," Resources, MDPI, vol. 8(4), pages 1-14, December.
    7. Usmani, Sameer & Gonzalez Quiroga, Arturo & Vasquez Padilla, Ricardo & Palmer, Graeme & Lake, Maree, 2020. "Simulation model of the characteristics of syngas from hardwood biomass for thermally integrated gasification using unisim design tool," Energy, Elsevier, vol. 211(C).
    8. Johannes Full & Steffen Merseburg & Robert Miehe & Alexander Sauer, 2021. "A New Perspective for Climate Change Mitigation—Introducing Carbon-Negative Hydrogen Production from Biomass with Carbon Capture and Storage (HyBECCS)," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    9. Machin, Einara Blanco & Pedroso, Daniel Travieso & Proenza, Nestor & Silveira, José Luz & Conti, Leonetto & Braga, Lúcia Bollini & Machin, Adrian Blanco, 2015. "Tar reduction in downdraft biomass gasifier using a primary method," Renewable Energy, Elsevier, vol. 78(C), pages 478-483.
    10. Rahman, MD Mashiur & Henriksen, Ulrik Birk & Ahrenfeldt, Jesper & Arnavat, Maria Puig, 2020. "Design, construction and operation of a low-tar biomass (LTB) gasifier for power applications," Energy, Elsevier, vol. 204(C).
    11. Rakesh N, & Dasappa, S., 2018. "A critical assessment of tar generated during biomass gasification - Formation, evaluation, issues and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1045-1064.
    12. Ma, Zhongqing & Zhang, Yimeng & Zhang, Qisheng & Qu, Yongbiao & Zhou, Jianbin & Qin, Hengfei, 2012. "Design and experimental investigation of a 190 kWe biomass fixed bed gasification and polygeneration pilot plant using a double air stage downdraft approach," Energy, Elsevier, vol. 46(1), pages 140-147.
    13. Chiang, Kung-Yuh & Lu, Cheng-Han & Lin, Ming-Hui & Chien, Kuang-Li, 2013. "Reducing tar yield in gasification of paper-reject sludge by using a hot-gas cleaning system," Energy, Elsevier, vol. 50(C), pages 47-53.
    14. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    15. Martínez, Juan Daniel & Mahkamov, Khamid & Andrade, Rubenildo V. & Silva Lora, Electo E., 2012. "Syngas production in downdraft biomass gasifiers and its application using internal combustion engines," Renewable Energy, Elsevier, vol. 38(1), pages 1-9.
    16. Han, Jun & Kim, Heejoon, 2008. "The reduction and control technology of tar during biomass gasification/pyrolysis: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 397-416, February.
    17. Park, Sang-Woo & Jang, Cheol-Hyeon, 2012. "Effects of pyrolysis temperature on changes in fuel characteristics of biomass char," Energy, Elsevier, vol. 39(1), pages 187-195.
    18. Ouadi, M. & Brammer, J.G. & Kay, M. & Hornung, A., 2013. "Fixed bed downdraft gasification of paper industry wastes," Applied Energy, Elsevier, vol. 103(C), pages 692-699.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:24:y:1999:i:4:p:285-296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.