IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v246y2022ics0360544222003000.html
   My bibliography  Save this article

Experimental study on the flame length and burning behaviors of pool fires with different ullage heights

Author

Listed:
  • Zhao, Jinlong
  • Zhang, Xiang
  • Zhang, Jianping
  • Wang, Wei
  • Chen, Changkun

Abstract

Floating-roof tanks are widely used in chemical parks and in case of fires, it is common to form pool fires with varying ullage height. This paper is aimed at examining experimentally and analytically the effects of ullage height on the burning and flame behaviors of heptane pool fires. A series of pool fire tests with four fuel tray sizes (D = 20–35 cm) and five ullage heights (h = 3 cm, 5 cm, D/2, D, 2D) was conducted. The flame characteristics (length and position) and mass burning rate were measured. Experimental results indicate that the total flame length can be divided into (i) a down-reaching flame length, (Lf,down), and (ii) an upper flame length (Lf,upper). The data shows that Lf,down increases as the ullage height increases whereas Lf,upper shows an opposite trend. For the tests with very large ullage heights (h/D = 1.93), it was found that the flame fluctuated periodically and, in some cases, self-extinguishing of the flame occurred due to lack of oxygen inside the fuel tray. A theoretical model is developed to calculate the total flame length by considering the influence of ullage height on air entrainment and heat feedback and subsequently validated against the experimental data.

Suggested Citation

  • Zhao, Jinlong & Zhang, Xiang & Zhang, Jianping & Wang, Wei & Chen, Changkun, 2022. "Experimental study on the flame length and burning behaviors of pool fires with different ullage heights," Energy, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222003000
    DOI: 10.1016/j.energy.2022.123397
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222003000
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123397?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Longxing & Wan, Huaxian & Gao, Zihe & Ji, Jie, 2021. "Study on flame merging behavior and air entrainment restriction of multiple fires," Energy, Elsevier, vol. 218(C).
    2. Chen, Jian & Tam, Wai Cheong & Tang, Wei & Zhang, Chao & Li, Changhai & Lu, Shouxiang, 2020. "Experimental study of the effect of ambient pressure on oscillating behavior of pool fires," Energy, Elsevier, vol. 203(C).
    3. Guo, Fangyi & Ding, Long & Gao, Zihe & Yu, Longxing & Ji, Jie, 2020. "Effects of wind flow and sidewall restriction on the geometric characteristics of propane diffusion flames in tunnels," Energy, Elsevier, vol. 198(C).
    4. Deng, Lei & Tang, Fei & Wang, Xinkai, 2021. "Uncontrollable combustion characteristics of energy storage oil pool: Modelling of mass loss rate and flame merging time of annular pools," Energy, Elsevier, vol. 224(C).
    5. Ji, Jie & Gong, Changzhi & Wan, Huaxian & Gao, Zihe & Ding, Long, 2019. "Prediction of thermal radiation received by vertical targets based on two-dimensional flame shape from rectangular n-heptane pool fires with different aspect ratios," Energy, Elsevier, vol. 185(C), pages 644-652.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Qiuping & Zhang, Zhiwei & Shen, Xiaobo & Cai, Chenren & Ma, Pan & Li, Yuehua & Chen, Wanghua, 2023. "Combustion characteristics and reactions of stacked wet pulverized magnesium," Energy, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jian & Song, Ye & Yu, Yueyang & Xiao, Guoqing & Tam, Wai Cheong & Kong, Depeng, 2022. "The influence of a plate obstacle on the burning behavior of small scale pool fires: An experimental study," Energy, Elsevier, vol. 254(PB).
    2. Deng, Lei & Tang, Fei & Wang, Xinkai, 2021. "Uncontrollable combustion characteristics of energy storage oil pool: Modelling of mass loss rate and flame merging time of annular pools," Energy, Elsevier, vol. 224(C).
    3. Wang, Chen & Ji, Jie, 2023. "Experimental study of dynamic combustion behavior and heat transfer of heptane pool fire with burning time under thin fuel thickness (2.0 mm–14.0 mm)," Energy, Elsevier, vol. 270(C).
    4. Yang, Jianfeng & Zhang, Bo & Chen, Liangchao & Diao, Xu & Hu, Yuanhao & Suo, Guanyu & Li, Ru & Wang, Qianlin & Li, Jinghai & Zhang, Jianwen & Dou, Zhan, 2023. "Improved solid radiation model for thermal response in large crude oil tanks," Energy, Elsevier, vol. 284(C).
    5. Luo, Sai & Xu, JingBo & Wang, Chen & Ji, Jie, 2023. "Experimental study of flame spread behavior and heat transfer mechanism over n-butanol fuel in trays of different widths," Energy, Elsevier, vol. 282(C).
    6. Li, Manhou & Xu, Zhiguo & Luo, Qiuting & Wang, Changjian, 2023. "Investigation of bicubic flame radiation model of continuously opposed spilling fire over n-butanol fuel," Energy, Elsevier, vol. 272(C).
    7. Wang, Chen & Hu, Haowei & Zhang, Hao & Ji, Jie & Wang, Zhigang, 2022. "Experimental study of the horizontal subsurface flow trajectory and dynamic external radiation of flame spread over diesel," Energy, Elsevier, vol. 260(C).
    8. Xie, Kai & Cui, Yunjing & Qiu, Xingqi & Wang, Jianxin, 2020. "Experimental study on flame characteristics and air entrainment of diesel horizontal spray burners at two different atmospheric pressures," Energy, Elsevier, vol. 211(C).
    9. Shi, Congling & Deng, Lei & Ren, Fei & Tang, Fei, 2023. "Experimental study on the flame height evolution of two adjacent hydrocarbon pool fires under transverse air flow," Energy, Elsevier, vol. 262(PB).
    10. Chen, Jian & Tam, Wai Cheong & Tang, Wei & Zhang, Chao & Li, Changhai & Lu, Shouxiang, 2020. "Experimental study of the effect of ambient pressure on oscillating behavior of pool fires," Energy, Elsevier, vol. 203(C).
    11. Dou, Yuling & Liu, Haiqiang & Liu, Bin & Zhang, Yu & Liu, Yongqiang & Cheng, Xiaozhang & Tao, Changfa, 2021. "Effects of carbon dioxide addition to fuel on flame radiation fraction in propane diffusion flames," Energy, Elsevier, vol. 218(C).
    12. Tang, Fei & Hu, Peng & Shi, Congling, 2021. "Ceiling thermal impingement spread characteristics induced by wall-attached fires under various sub-atmospheric pressures," Energy, Elsevier, vol. 215(PB).
    13. Sun, Xiepeng & Zhang, Xiaolei & Lv, Jiang & Chen, Xiaotao & Hu, Longhua, 2023. "Experimental study on the buoyant turbulent diffusion flame height of various intermittent levels," Applied Energy, Elsevier, vol. 351(C).
    14. Ding, Long & Gong, Changzhi & Ge, Fanliang & Ji, Jie, 2021. "Experimental study on flame radiation characteristic from line pool fires of n-heptane fuel in open space," Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222003000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.