IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v215y2021ipbs0360544220322349.html
   My bibliography  Save this article

Ceiling thermal impingement spread characteristics induced by wall-attached fires under various sub-atmospheric pressures

Author

Listed:
  • Tang, Fei
  • Hu, Peng
  • Shi, Congling

Abstract

Ceiling thermal impingement fire spread induced by indoor uncontrollable energy combustion occurred frequently and caused many casualties and property damage. The sub-atmospheric pressure environment has a great impact on uncontrollable energy combustion characteristics of hazardous combustible gaseous fuel fire. China west high-altitude cities develop rapidly due to the economic development, and fire accidents frequently occur. This paper focused on experimentally studying the ceiling fire impingement hazard characteristics induced by wall-attached fires under sub-atmospheric pressures, the various sub-atmospheric pressures (from 55 kPa to 100 kPa), energy heat release rates (from 0.25 kW to 2.5 kW), and source-ceiling heights (0.475 m, 0.38 m, 0.285 m, 0.19 m and 0.095 m) were selected as an variable. The ceiling flame extension lengths of facing and lateral directions were measured and analyzed. Result showed that, the dimensionless ceiling flame extension area is higher in sub-atmospheric pressures. There are many differences between them due to the lower buoyancy in various sub-atmospheric pressures. By accounting for the air entrainment change characterization, it is found that the air entrainment of wall-attached propane jet fire is weaker in sub-atmospheric pressures. The influence of pressure on the flame expansion area is related to the 4/5 power of the ratio of the entrainment coefficient ((α/α100)4/5). And a new model was finally obtained to correlate ceiling flame extension area induced by wall-attached fires with various sub-atmospheric pressures. This work provides can help understand ceiling impingement flow and hazard characteristics under various sub-atmospheric pressures.

Suggested Citation

  • Tang, Fei & Hu, Peng & Shi, Congling, 2021. "Ceiling thermal impingement spread characteristics induced by wall-attached fires under various sub-atmospheric pressures," Energy, Elsevier, vol. 215(PB).
  • Handle: RePEc:eee:energy:v:215:y:2021:i:pb:s0360544220322349
    DOI: 10.1016/j.energy.2020.119127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220322349
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choy, Y.S. & Zhen, H.S. & Leung, C.W. & Li, H.B., 2012. "Pollutant emission and noise radiation from open and impinging inverse diffusion flames," Applied Energy, Elsevier, vol. 91(1), pages 82-89.
    2. Chen, Jian & Tam, Wai Cheong & Tang, Wei & Zhang, Chao & Li, Changhai & Lu, Shouxiang, 2020. "Experimental study of the effect of ambient pressure on oscillating behavior of pool fires," Energy, Elsevier, vol. 203(C).
    3. Veeraragavan, Ananthanarayanan, 2015. "On flame propagation in narrow channels with enhanced wall thermal conduction," Energy, Elsevier, vol. 93(P1), pages 631-640.
    4. Lawal, Mohammed S. & Fairweather, Michael & Gogolek, Peter & Ingham, Derek B. & Ma, Lin & Pourkashanian, Mohamed & Williams, Alan, 2013. "CFD predictions of wake-stabilised jet flames in a cross-flow," Energy, Elsevier, vol. 53(C), pages 259-269.
    5. Dong, L.L. & Cheung, C.S. & Leung, C.W., 2013. "Heat transfer optimization of an impinging port-array inverse diffusion flame jet," Energy, Elsevier, vol. 49(C), pages 182-192.
    6. Wan, Huaxian & Gao, Zihe & Ji, Jie & Zhang, Yongming & Li, Kaiyuan, 2018. "Experimental and theoretical study on flame front temperatures within ceiling jets from turbulent diffusion flames of n-heptane fuel," Energy, Elsevier, vol. 164(C), pages 79-86.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhenhua & Jiang, Juncheng & Wang, Guanghu & Ni, Lei & Pan, Yong & Li, Meng, 2023. "Flame morphologic characteristics of horizontally oriented jet fires impinging on a vertical plate: Experiments and theoretical analysis," Energy, Elsevier, vol. 264(C).
    2. Shi, Congling & Deng, Lei & Ren, Fei & Tang, Fei, 2023. "Experimental study on the flame height evolution of two adjacent hydrocarbon pool fires under transverse air flow," Energy, Elsevier, vol. 262(PB).
    3. Deng, Lei & Tang, Fei & Wang, Xinkai, 2021. "Uncontrollable combustion characteristics of energy storage oil pool: Modelling of mass loss rate and flame merging time of annular pools," Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Zihe & Wan, Huaxian & Ji, Jie & Bi, Yubo, 2019. "Experimental prediction on the performance and propagation of ceiling jets under the influence of wall confinement," Energy, Elsevier, vol. 178(C), pages 378-385.
    2. Deng, Lei & Tang, Fei & Wang, Xinkai, 2021. "Uncontrollable combustion characteristics of energy storage oil pool: Modelling of mass loss rate and flame merging time of annular pools," Energy, Elsevier, vol. 224(C).
    3. Shang, Fengju & Hu, Longhua & Sun, Xiepeng & Wang, Qiang & Palacios, Adriana, 2017. "Flame downwash length evolution of non-premixed gaseous fuel jets in cross-flow: Experiments and a new correlation," Applied Energy, Elsevier, vol. 198(C), pages 99-107.
    4. Sun, Xiepeng & Zhang, Xiaolei & Lv, Jiang & Chen, Xiaotao & Hu, Longhua, 2023. "Experimental study on the buoyant turbulent diffusion flame height of various intermittent levels," Applied Energy, Elsevier, vol. 351(C).
    5. Nair, Aswathy & Velamati, Ratna Kishore & Kumar, Sudarshan, 2016. "Effect OF CO2/N2 dilution on laminar burning velocity of liquid petroleum gas-air mixtures at elevated temperatures," Energy, Elsevier, vol. 100(C), pages 145-153.
    6. Guo, Fangyi & Ding, Long & Gao, Zihe & Yu, Longxing & Ji, Jie, 2020. "Effects of wind flow and sidewall restriction on the geometric characteristics of propane diffusion flames in tunnels," Energy, Elsevier, vol. 198(C).
    7. Wei, Zhilong & Zhen, Haisheng & Leung, Chunwah & Cheung, Chunshun & Huang, Zuohua, 2020. "Effects of unburned gases velocity on the CO/NO2/NOx formations and overall emissions of laminar premixed biogas-hydrogen impinging flame," Energy, Elsevier, vol. 196(C).
    8. Zhang, Xiaochun & Zhang, Zijian & Su, Guokai & Tang, Fei & Liu, Aihua & Tao, Haowen, 2020. "Experimental study on thermal hazard and facade flame characterization induced by incontrollable combustion of indoor energy usage," Energy, Elsevier, vol. 207(C).
    9. Zaidani, Mouna & Tajik, Abdul Raouf & Qureshi, Zahid Ahmed & Shamim, Tariq & Abu Al-Rub, Rashid K., 2018. "Investigating the flue-wall deformation effects on performance characteristics of an open-top aluminum anode baking furnace," Applied Energy, Elsevier, vol. 231(C), pages 1033-1049.
    10. Wan, Jianlong & Zhao, Haibo, 2020. "Effect of conjugate heat exchange of flame holder on laminar premixed flame stabilization in a meso-scale diverging combustor," Energy, Elsevier, vol. 198(C).
    11. Tang, Aikun & Cai, Tao & Deng, Jiang & Zhao, Dan & Huang, Qiuhan & Zhou, Chen, 2019. "Experimental study on flame structure transitions of premixed propane/air in micro-scale planar combustors," Energy, Elsevier, vol. 179(C), pages 558-570.
    12. Ruirui Wang & Jingyu Ran & Xuesen Du & Juntian Niu & Wenjie Qi, 2016. "The Influence of Slight Protuberances in a Micro-Tube Reactor on Methane/Moist Air Catalytic Combustion," Energies, MDPI, vol. 9(6), pages 1-17, May.
    13. Wang, Jie & Wei, Yinqiu & Xie, Zhicheng & Jiang, Xuepeng & Zhang, Hongjie & Lu, Kaihua, 2020. "Influence of the water spray flow rate and angle on the critical velocity in tunnels with longitudinal ventilation," Energy, Elsevier, vol. 190(C).
    14. Xie, Kai & Cui, Yunjing & Qiu, Xingqi & Wang, Jianxin, 2020. "Experimental study on flame characteristics and air entrainment of diesel horizontal spray burners at two different atmospheric pressures," Energy, Elsevier, vol. 211(C).
    15. Chen, Jian & Song, Ye & Yu, Yueyang & Xiao, Guoqing & Tam, Wai Cheong & Kong, Depeng, 2022. "The influence of a plate obstacle on the burning behavior of small scale pool fires: An experimental study," Energy, Elsevier, vol. 254(PB).
    16. Wan, Jianlong & Zhao, Haibo, 2017. "Dynamics of premixed CH4/air flames in a micro combustor with a plate flame holder and preheating channels," Energy, Elsevier, vol. 139(C), pages 366-379.
    17. De Giorgi, Maria Grazia & Ficarella, Antonio & Sciolti, Aldebara & Pescini, Elisa & Campilongo, Stefano & Di Lecce, Giorgio, 2017. "Improvement of lean flame stability of inverse methane/air diffusion flame by using coaxial dielectric plasma discharge actuators," Energy, Elsevier, vol. 126(C), pages 689-706.
    18. Wan, Jianlong & Fan, Aiwu & Yao, Hong & Liu, Wei, 2016. "Experimental investigation and numerical analysis on the blow-off limits of premixed CH4/air flames in a mesoscale bluff-body combustor," Energy, Elsevier, vol. 113(C), pages 193-203.
    19. Li, Bo & Wan, Huaxian & Gao, Zihe & Ji, Jie, 2019. "Experimental study on the characteristics of flame merging and tilt angle from twin propane burners under cross wind," Energy, Elsevier, vol. 174(C), pages 1200-1209.
    20. Wan, Jianlong & Zhao, Haibo, 2020. "Effect of thermal condition of solid wall on the stabilization of a preheated and holder-stabilized laminar premixed flame," Energy, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:215:y:2021:i:pb:s0360544220322349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.