IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v259y2022ics0360544222018990.html
   My bibliography  Save this article

Effects of lateral cooling hole configuration on a swirl-stabilized combustor

Author

Listed:
  • Zhang, Yueliang
  • Li, Jiangheng
  • Xie, Jin

Abstract

It is necessary to cool the combustor liner due to its harsh operating conditions. In the current study, wall temperatures of a swirling combustor with and without cooling holes are compared using a three-dimensional numerical simulation with conjugate heat transfer method. It is shown that the wall temperature can be reduced by 344–501 K by using cooling holes. Two lateral coolant injection designs are then proposed since the laterally injected coolant may interact with the swirling flow. Normal axial injection is also investigated to compare NOx emissions, cooling effectiveness and total pressure loss for various scenarios with different injection angles. The results show that when the incidence angle is 15°, NOx emissions remain low for all incidence configurations. When the lateral incidence is implemented, especially at small incidence angles such as 15° and 30°, the cooling effectiveness is maintained above 0.9. However, when the coolant incidence direction is opposite to the swirling flow and the incidence angle is 15° results in a high total pressure loss. At an incidence angle of 60°, the total pressure loss is about the same for all cases, at 3.2%.

Suggested Citation

  • Zhang, Yueliang & Li, Jiangheng & Xie, Jin, 2022. "Effects of lateral cooling hole configuration on a swirl-stabilized combustor," Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222018990
    DOI: 10.1016/j.energy.2022.125002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222018990
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deng, Daxiang & Xie, Yanlin & Chen, Liang & Pi, Guang & Huang, Yue, 2019. "Experimental investigation on thermal and combustion performance of a combustor with microchannel cooling," Energy, Elsevier, vol. 181(C), pages 954-963.
    2. Yang, Xiao & Yang, Wenming & Dong, Shikui & Tan, Heping, 2020. "Flame stability analysis of premixed hydrogen/air mixtures in a swirl micro-combustor," Energy, Elsevier, vol. 209(C).
    3. Chung, Heeyoon & Sohn, Ho-Seong & Park, Jun Su & Kim, Kyung Min & Cho, Hyung Hee, 2017. "Thermo-structural analysis of cracks on gas turbine vane segment having multiple airfoils," Energy, Elsevier, vol. 118(C), pages 1275-1285.
    4. Nozari, Mohammadreza & Tabejamaat, Sadegh & Sadeghizade, Hasan & Aghayari, Majid, 2021. "Experimental investigation of the effect of gaseous fuel injector geometry on the pollutant formation and thermal characteristics of a micro gas turbine combustor," Energy, Elsevier, vol. 235(C).
    5. Chen, Yuqian & Fan, Yuxin & Han, Qixiang, 2022. "Experimental investigation of thermal protection performance of bluff-body flameholder in augmented combustor under air jet cooling," Energy, Elsevier, vol. 254(PB).
    6. Wan, Jianlong & Zhao, Haibo, 2020. "Effect of conjugate heat exchange of flame holder on laminar premixed flame stabilization in a meso-scale diverging combustor," Energy, Elsevier, vol. 198(C).
    7. Yilmaz, Harun & Cam, Omer & Yilmaz, Ilker, 2017. "Effect of micro combustor geometry on combustion and emission behavior of premixed hydrogen/air flames," Energy, Elsevier, vol. 135(C), pages 585-597.
    8. Song, Jiwoon & Lee, Keon Woo & Kim, Kyung Min & Cho, Hyung Hee, 2012. "Slot film cooling performance in combustor with flame holders," Energy, Elsevier, vol. 37(1), pages 533-539.
    9. Wang, Zhiduo & Feng, Zhenping & Zhang, Xiaobo & Peng, Jingbo & Zhang, Fei & Wu, Xing, 2022. "Improving cooling performance and robustness of NGV endwall film cooling design using micro-scale ribs considering incidence effects," Energy, Elsevier, vol. 253(C).
    10. Jiang, Yuguang & Xu, Yaxing & Zhang, Silong & Chetehouna, Khaled & Gascoin, Nicolas & Qin, Jiang & Bao, Wen, 2017. "Parametric study on the distribution of flow rate and heat sink utilization in cooling channels of advanced aero-engines," Energy, Elsevier, vol. 138(C), pages 1056-1068.
    11. Kim, Kyung Min & Jeon, Yun Heung & Yun, Namgeon & Lee, Dong Hyun & Cho, Hyung Hee, 2011. "Thermo-mechanical life prediction for material lifetime improvement of an internal cooling system in a combustion liner," Energy, Elsevier, vol. 36(2), pages 942-949.
    12. Thomas Jackowski & Maximilian Elfner & Hans-Jörg Bauer & Katharina Stichling & Marco Hahn, 2021. "Experimental Study of Impingement Effusion Cooled Double-Wall Combustor Liners: Aerodynamic Analysis with Stereo-PIV," Energies, MDPI, vol. 14(19), pages 1-23, September.
    13. Xie, Jin & Zhu, Yuejin, 2020. "Characteristics study on a modified advanced vortex combustor," Energy, Elsevier, vol. 193(C).
    14. Veeraragavan, Ananthanarayanan, 2015. "On flame propagation in narrow channels with enhanced wall thermal conduction," Energy, Elsevier, vol. 93(P1), pages 631-640.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Jing & Cheng, Kunlin & Dang, Chaolei & Wang, Yilin & Liu, Zekuan & Qin, Jiang & Liu, Xiaoyong, 2023. "Performance comparison of liquid metal cooling system and regenerative cooling system in supersonic combustion ramjet engines," Energy, Elsevier, vol. 275(C).
    2. Peng Guan & Yan-Ting Ai & Cheng-Wei Fei, 2019. "An Enhanced Flow-Thermo-Structural Modeling and Validation for the Integrated Analysis of a Film Cooling Nozzle Guide Vane," Energies, MDPI, vol. 12(14), pages 1-20, July.
    3. Xie, Bo & Peng, Qingguo & E, Jiaqiang & Tu, Yaojie & Wei, Jia & Tang, Shihao & Song, Yangyang & Fu, Guang, 2022. "Effects of CO addition and multi-factors optimization on hydrogen/air combustion characteristics and thermal performance based on grey relational analysis," Energy, Elsevier, vol. 255(C).
    4. Wan, Jianlong & Zhao, Haibo, 2020. "Effect of thermal condition of solid wall on the stabilization of a preheated and holder-stabilized laminar premixed flame," Energy, Elsevier, vol. 200(C).
    5. He, Ziqiang & Yan, Yunfei & Zhao, Ting & Zhang, Zhien & Mikulčić, Hrvoje, 2022. "Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    6. Wan, Jianlong & Zhao, Haibo, 2018. "Thermal performance of solid walls in a mesoscale combustor with a plate flame holder and preheating channels," Energy, Elsevier, vol. 157(C), pages 448-459.
    7. Nair, Aswathy & Velamati, Ratna Kishore & Kumar, Sudarshan, 2016. "Effect OF CO2/N2 dilution on laminar burning velocity of liquid petroleum gas-air mixtures at elevated temperatures," Energy, Elsevier, vol. 100(C), pages 145-153.
    8. Qian, Xiaoru & Yan, Peigang & Wang, Xiangfeng & Han, Wanjin, 2023. "Effect of thermal barrier coatings and integrated cooling on the conjugate heat transfer and thermal stress distribution of nickel-based superalloy turbine vanes," Energy, Elsevier, vol. 277(C).
    9. Gao, Zihe & Wan, Huaxian & Ji, Jie & Bi, Yubo, 2019. "Experimental prediction on the performance and propagation of ceiling jets under the influence of wall confinement," Energy, Elsevier, vol. 178(C), pages 378-385.
    10. Kanmaniraja Radhakrishnan & Jun Su Park, 2021. "Thermal Analysis and Creep Lifetime Prediction Based on the Effectiveness of Thermal Barrier Coating on a Gas Turbine Combustor Liner Using Coupled CFD and FEM Simulation," Energies, MDPI, vol. 14(13), pages 1-21, June.
    11. Peng, Qingguo & E, Jiaqiang & Yang, W.M. & Xu, Hongpeng & Chen, Jingwei & Meng, Tian & Qiu, Runzhi, 2018. "Effects analysis on combustion and thermal performance enhancement of a nozzle-inlet micro tube fueled by the premixed hydrogen/air," Energy, Elsevier, vol. 160(C), pages 349-360.
    12. García-Guendulain, Juan M. & Riesco-Ávila, José M. & Picón-Núñez, Martín, 2020. "Reducing thermal imbalances and flow nonuniformity in solar collectors through the selection of free flow area ratio," Energy, Elsevier, vol. 194(C).
    13. Feng, Yu & Liu, Yuna & Cao, Yong & Gong, Keyu & Liu, Shuyuan & Qin, Jiang, 2020. "Thermal management evaluation for advanced aero-engines using catalytic steam reforming of hydrocarbon fuels," Energy, Elsevier, vol. 193(C).
    14. Aravind, B. & Khandelwal, Bhupendra & Ramakrishna, P.A. & Kumar, Sudarshan, 2020. "Towards the development of a high power density, high efficiency, micro power generator," Applied Energy, Elsevier, vol. 261(C).
    15. Nozari, Mohammadreza & Tabejamaat, Sadegh & Sadeghizade, Hasan & Aghayari, Majid, 2021. "Experimental investigation of the effect of gaseous fuel injector geometry on the pollutant formation and thermal characteristics of a micro gas turbine combustor," Energy, Elsevier, vol. 235(C).
    16. Fontana, Éliton & Battiston, Lucas & Oliveira, Rosivaldo G.A. & Capeletto, Claudia A. & Luz, Luiz F.L., 2022. "Beyond the combustion chamber: Heat transfer and its impact on micro-thermophotovoltaic systems performance," Energy, Elsevier, vol. 239(PC).
    17. Wan, Jianlong & Zhao, Haibo, 2020. "Effect of conjugate heat exchange of flame holder on laminar premixed flame stabilization in a meso-scale diverging combustor," Energy, Elsevier, vol. 198(C).
    18. Tang, Aikun & Cai, Tao & Deng, Jiang & Zhao, Dan & Huang, Qiuhan & Zhou, Chen, 2019. "Experimental study on flame structure transitions of premixed propane/air in micro-scale planar combustors," Energy, Elsevier, vol. 179(C), pages 558-570.
    19. Ruirui Wang & Jingyu Ran & Xuesen Du & Juntian Niu & Wenjie Qi, 2016. "The Influence of Slight Protuberances in a Micro-Tube Reactor on Methane/Moist Air Catalytic Combustion," Energies, MDPI, vol. 9(6), pages 1-17, May.
    20. Yan, Yunfei & Liu, Ying & Li, Lixian & Cui, Yu & Zhang, Li & Yang, Zhongqing & Zhang, Zhien, 2019. "Numerical comparison of H2/air catalytic combustion characteristic of micro–combustors with a conventional, slotted or controllable slotted bluff body," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222018990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.