IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v242y2022ics0360544221032448.html
   My bibliography  Save this article

Forced convective heat transfer in optimized kelvin cells to enhance overall performance

Author

Listed:
  • Sun, Mingrui
  • Zhang, Lunxiang
  • Hu, Chengzhi
  • Zhao, Jiafei
  • Tang, Dawei
  • Song, Yongchen

Abstract

The optimization of pore structure for metal foam is considered a feasible approach for improving the overall heat transfer performance. Thus, we numerically investigated Kelvin cells with different throat areas and structures (elliptical Kelvin cell (EKC)) to characterize the influence on pressure drop and heat transfer coefficient using FLUENT 18.0. The standard k–ε model exhibited a better agreement with experimental data and required less time to achieve convergence. The results revealed that the throat area could not feasibly optimize the overall heat transfer performance. Moreover, the area goodness factor j/f that considered the influences of both heat transfer coefficient and pressure drop on the overall heat transfer performance of EKC with the higher than conventional Kelvin cell. Based on comparative analysis between pressure, velocity, turbulence kinetic energy, and temperature distribution, increasing the space and decreasing the angle between the skeleton and flow direction caused a significant pressure drop in the EKC samples. Owing to the existence of a lower temperature area at the leeward of skeletons and a small difference of impingement cooling on windward skeletons, the reduction of HTC was acceptable. Therefore, the EKC exhibited immense potential for enhancing the design of heat transfer devices.

Suggested Citation

  • Sun, Mingrui & Zhang, Lunxiang & Hu, Chengzhi & Zhao, Jiafei & Tang, Dawei & Song, Yongchen, 2022. "Forced convective heat transfer in optimized kelvin cells to enhance overall performance," Energy, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032448
    DOI: 10.1016/j.energy.2021.122995
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221032448
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Maolin & Zhao, Xiling & Fu, Lin & Zhang, Shigang, 2017. "Performance study and application of new coal-fired boiler flue gas heat recovery system," Applied Energy, Elsevier, vol. 188(C), pages 121-129.
    2. Du, Shen & Li, Ming-Jia & Ren, Qinlong & Liang, Qi & He, Ya-Ling, 2017. "Pore-scale numerical simulation of fully coupled heat transfer process in porous volumetric solar receiver," Energy, Elsevier, vol. 140(P1), pages 1267-1275.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kirttayoth Yeranee & Yu Rao & Li Yang & Hao Li, 2022. "Improved Thermal Performance of a Serpentine Cooling Channel by Topology Optimization Infilled with Triply Periodic Minimal Surfaces," Energies, MDPI, vol. 15(23), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Carballo, Jose Antonio & Carra, Maria Elena & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "CFD analysis of the performance impact of geometrical shape on volumetric absorbers in a standard cup," Renewable Energy, Elsevier, vol. 201(P1), pages 256-272.
    2. Mo, Qianci & Zhu, Xishan & Deng, Chenquan & Cen, Shuhai & Ye, Haibo & Wang, Chunqiang & Lu, Wei & Chen, Xiaojun & Lin, Xingsu, 2023. "Analysis on influencing factors and improvement of thermal efficiency of bagasse boilers based on performance test data," Energy, Elsevier, vol. 271(C).
    3. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    4. Chauhan, Shivendra Singh & Khanam, Shabina, 2019. "Enhancement of efficiency for steam cycle of thermal power plants using process integration," Energy, Elsevier, vol. 173(C), pages 364-373.
    5. Zhang, Qiangqiang & Chang, Zheshao & Fu, Mingkai & Nie, Fuliang & Ren, Ting & Li, Xin, 2023. "Performance analysis of a light uniform device for the solar receiver or reactor," Energy, Elsevier, vol. 270(C).
    6. Yan, Min & Zhang, Liang & Shi, Yuetao & Zhang, Liqiang & Li, Yuzhong & Ma, Chunyuan, 2018. "A novel boiler cold-end optimisation system based on bypass flue in coal-fired power plants: Heat recovery from wet flue gas," Energy, Elsevier, vol. 152(C), pages 84-94.
    7. Zhang, Hao & Lai, Yanhua & Yang, Xiao & Li, Chang & Dong, Yong, 2022. "Non-evaporative solvent extraction technology applied to water and heat recovery from low-temperature flue gas: Parametric analysis and feasibility evaluation," Energy, Elsevier, vol. 244(PB).
    8. Du, Shen & Tong, Zi-Xiang & Zhang, Hong-Hu & He, Ya-Ling, 2019. "Tomography-based determination of Nusselt number correlation for the porous volumetric solar receiver with different geometrical parameters," Renewable Energy, Elsevier, vol. 135(C), pages 711-718.
    9. Fu, Lin & Li, Yonghong & Wu, Yanting & Wang, Xiaoyin & Jiang, Yi, 2021. "Low carbon district heating in China in 2025- a district heating mode with low grade waste heat as heat source," Energy, Elsevier, vol. 230(C).
    10. Nakakura, Mitsuho & Matsubara, Koji & Bellan, Selvan & Kodama, Tatsuya, 2020. "Direct simulation of a volumetric solar receiver with different cell sizes at high outlet temperatures (1,000–1,500 °C)," Renewable Energy, Elsevier, vol. 146(C), pages 1143-1152.
    11. Navalho, Jorge E.P. & Pereira, José C.F., 2020. "A comprehensive and fully predictive discrete methodology for volumetric solar receivers: application to a functional parabolic dish solar collector system," Applied Energy, Elsevier, vol. 267(C).
    12. Ma, Hongqiang & Xie, Yue & Duan, Kerun & Song, Xingpeng & Ding, Ruixiang & Hou, Caiqin, 2022. "Dynamic control method of flue gas heat transfer system in the waste heat recovery process," Energy, Elsevier, vol. 259(C).
    13. Liao, Weicheng & Zhang, Xiaoyue & Li, Zhen, 2022. "Experimental investigation on the performance of a boiler system with flue gas dehumidification and combustion air humidification," Applied Energy, Elsevier, vol. 323(C).
    14. Shang, Sheng & Li, Xianting & Chen, Wei & Wang, Baolong & Shi, Wenxing, 2017. "A total heat recovery system between the flue gas and oxidizing air of a gas-fired boiler using a non-contact total heat exchanger," Applied Energy, Elsevier, vol. 207(C), pages 613-623.
    15. Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Ramadan, Mohamad & Khaled, Mahmoud & Haddad, Ahmad & Abdulhay, Bakri & Durrant, Andy & El Hage, Hicham, 2018. "An inhouse code for simulating heat recovery from boilers to heat water," Energy, Elsevier, vol. 157(C), pages 200-210.
    17. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "Experimental study of innovative periodic cellular structures as air volumetric absorbers," Renewable Energy, Elsevier, vol. 184(C), pages 391-404.
    18. Li, Xinyi & Zhu, Ziliang & Xu, Zirui & Ma, Ting & Zhang, Hao & Liu, Jun & Wang, Xian & Wang, Qiuwang, 2019. "A three-dimensional pore-scale lattice Boltzmann model for investigating the supergravity effects on charging process," Applied Energy, Elsevier, vol. 254(C).
    19. Pashchenko, Dmitry, 2018. "First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming," Energy, Elsevier, vol. 143(C), pages 478-487.
    20. Chen, Sheng & Li, Wenhao & Yan, Fuwu, 2020. "Thermal performance analysis of a porous solar cavity receiver," Renewable Energy, Elsevier, vol. 156(C), pages 558-569.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.