IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipes0360544221027110.html
   My bibliography  Save this article

Optimal operation of Concentrating Solar Collector fields using exergy-based hierarchical control

Author

Listed:
  • Machado, Diogo Ortiz
  • Andrade, Gustavo Artur
  • Normey-Rico, Julio Elias
  • Bordons, Carlos

Abstract

This work develops an exergy-based hierarchical control for the ACUREX solar collector field. The objective is to simulate and to determine the optimal control operation based on exergy. The control structure uses a nonlinear exergy optimization layer that sends the steady-state optimal temperature set-point to a nonlinear Model Predictive Control layer. The simulations show that the control can track references, reject disturbances, and optimize the production considering process intermittency (start-up, operation, shut-down), operational constraints, and pump power. The study compares the proposed control to common literature approaches such as energy-based and maximum outlet temperature reference generation. The main findings are: (i) the proposed exergy-based controller design gives an enhanced second law of thermodynamics performance independently of solar collector process parameters; (ii) despite modest energy production and efficiency advantages (1%) on ACUREX solar field, the real application of the control law does not imply any new investments or hardware changes; (iii) seeking the maximum temperature is a simple, quasi-optimal strategy for the ACUREX solar field; and (iv) energy-based optimization is not a suitable strategy for ACUREX solar field from the second law of thermodynamics (exergy) perspective.

Suggested Citation

  • Machado, Diogo Ortiz & Andrade, Gustavo Artur & Normey-Rico, Julio Elias & Bordons, Carlos, 2022. "Optimal operation of Concentrating Solar Collector fields using exergy-based hierarchical control," Energy, Elsevier, vol. 239(PE).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221027110
    DOI: 10.1016/j.energy.2021.122462
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221027110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122462?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cirre, Cristina M. & Berenguel, Manuel & Valenzuela, Loreto & Klempous, Ryszard, 2009. "Reference governor optimization and control of a distributed solar collector field," European Journal of Operational Research, Elsevier, vol. 193(3), pages 709-717, March.
    2. Sangi, Roozbeh & Müller, Dirk, 2019. "Application of the second law of thermodynamics to control: A review," Energy, Elsevier, vol. 174(C), pages 938-953.
    3. Sharma, Ashish K. & Sharma, Chandan & Mullick, Subhash C. & Kandpal, Tara C., 2017. "Solar industrial process heating: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 124-137.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunxia Gao & Zhaoyan Zhang & Peiguang Wang, 2023. "Day-Ahead Scheduling Strategy Optimization of Electric–Thermal Integrated Energy System to Improve the Proportion of New Energy," Energies, MDPI, vol. 16(9), pages 1-30, April.
    2. Machado, Diogo Ortiz & Chicaiza, William D. & Escaño, Juan M. & Gallego, Antonio J. & de Andrade, Gustavo A. & Normey-Rico, Julio E. & Bordons, Carlos & Camacho, Eduardo F., 2023. "Digital twin of a Fresnel solar collector for solar cooling," Applied Energy, Elsevier, vol. 339(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clara Inés Pardo Martínez, 2009. "Energy efficiency developments in the manufacturing industries of Germany and Colombia, 1998-2005," Serie de Documentos en Economía y Violencia 6144, Centro de Investigaciones en Violencia, Instituciones y Desarrollo Económico (VIDE).
    2. Correa-Jullian, Camila & López Droguett, Enrique & Cardemil, José Miguel, 2020. "Operation scheduling in a solar thermal system: A reinforcement learning-based framework," Applied Energy, Elsevier, vol. 268(C).
    3. Robertson, John & Riggs, Brian & Islam, Kazi & Ji, Yaping Vera & Spitler, Christopher M. & Gupta, Naman & Krut, Dimitri & Ermer, Jim & Miller, Fletcher & Codd, Daniel & Escarra, Matthew, 2019. "Field testing of a spectrum-splitting transmissive concentrator photovoltaic module," Renewable Energy, Elsevier, vol. 139(C), pages 806-814.
    4. Mahmoodi, Kumars & Razminia, Abolhassan & Ghassemi, Hassan, 2021. "Optimal control of wave energy converters with non-integer order performance indices: A dynamic programming approach," Renewable Energy, Elsevier, vol. 177(C), pages 1212-1233.
    5. Francisco Álvarez-Sánchez & Jassón Flores-Prieto & Octavio García-Valladares, 2021. "Annual Thermal Performance of an Industrial Hybrid Direct–Indirect Solar Air Heating System for Drying Applications in Morelos-México," Energies, MDPI, vol. 14(17), pages 1-20, August.
    6. Moudakkar, Touria & El Hallaoui, Z. & Vaudreuil, S. & Bounahmidi, T., 2019. "Modeling and performance analysis of a PTC for industrial phosphate flash drying," Energy, Elsevier, vol. 166(C), pages 1134-1148.
    7. Palomo-Torrejón, Elisabet & Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Mur-Pérez, Francisco, 2021. "Economic and environmental benefits of geothermal energy in industrial processes," Renewable Energy, Elsevier, vol. 174(C), pages 134-146.
    8. Zahedi, Rahim & Daneshgar, Sareh, 2022. "Exergy analysis and optimization of Rankine power and ejector refrigeration combined cycle," Energy, Elsevier, vol. 240(C).
    9. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.
    10. Barbosa, Eloiny Guimarães & Araujo, Marcos Eduardo Viana de & Lopes, Roberto Precci & Martins, Marcio Arêdes & Moraes, Maria Joselma de & Barbosa, Elisa Guimarães & Falconí, Javier Hernán Heredia, 2020. "Exergetic, economic and environmental (3E) analysis of a low cost solar heater in different configurations," Renewable Energy, Elsevier, vol. 160(C), pages 1096-1104.
    11. Pengbang Wei & Yufang Peng & Weidong Chen, 2022. "Climate change adaptation mechanisms and strategies of coal-fired power plants," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-22, December.
    12. Martínez-Rodríguez, Guillermo & Fuentes-Silva, Amanda L. & Velázquez-Torres, Daniel & Picón-Núñez, Martín, 2022. "Comprehensive solar thermal integration for industrial processes," Energy, Elsevier, vol. 239(PD).
    13. Farjana, Shahjadi Hisan & Huda, Nazmul & Mahmud, M.A. Parvez & Saidur, R., 2018. "Solar industrial process heating systems in operation – Current SHIP plants and future prospects in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 409-419.
    14. Trinklein, Eddy H. & Parker, Gordon G. & McCoy, Timothy J., 2020. "Modeling, optimization, and control of ship energy systems using exergy methods," Energy, Elsevier, vol. 191(C).
    15. Qingyou Yan & Chao Qin, 2017. "Environmental and Economic Benefit Analysis of an Integrated Heating System with Geothermal Energy—A Case Study in Xi’an China," Energies, MDPI, vol. 10(12), pages 1-16, December.
    16. Gary Ampuño & Juan Lata-Garcia & Francisco Jurado, 2020. "Evaluation of Energy Efficiency and the Reduction of Atmospheric Emissions by Generating Electricity from a Solar Thermal Power Generation Plant," Energies, MDPI, vol. 13(3), pages 1-20, February.
    17. Surender Kannaiyan & Neeraj Dhanraj Bokde, 2022. "Performance of Parabolic Trough Collector with Different Heat Transfer Fluids and Control Operation," Energies, MDPI, vol. 15(20), pages 1-23, October.
    18. Famiglietti, Antonio & Lecuona, Antonio & Ibarra, Mercedes & Roa, Javier, 2021. "Turbo-assisted direct solar air heater for medium temperature industrial processes using Linear Fresnel Collectors. Assessment on daily and yearly basis," Energy, Elsevier, vol. 223(C).
    19. Du, Bin & Lund, Peter D. & Wang, Jun, 2021. "Combining CFD and artificial neural network techniques to predict the thermal performance of all-glass straight evacuated tube solar collector," Energy, Elsevier, vol. 220(C).
    20. Ismail, Muhammad Imran & Yunus, Nor Alafiza & Hashim, Haslenda, 2021. "Integration of solar heating systems for low-temperature heat demand in food processing industry – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221027110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.