IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v225y2021ics0360544221004965.html
   My bibliography  Save this article

Investigation in economic analysis of microgrids based on renewable energy uncertainty and demand response in the electricity market

Author

Listed:
  • Huang, Shoujun
  • Abedinia, Oveis

Abstract

Owing to the increasing utilization of renewable resources such as wind turbines (WT), photovoltaic (PV) into a microgrid (MG), optimal planning has become important to satisfy the energy demand due to inherent uncertainties. This paper proposes a new model of planning based on renewable energy uncertainty and demand response and electric vehicles (EVs) in order to minimize the electricity market’s total cost. Considering uncertainty challenges, energy storage system (ESS) and demand response programs based on time-of-use (TOU) are employed as a solution for managing the power flow in MG to warranty the essential load supporting and voltage stability and satisfy electrical and heat demands. Moreover, in this paper, the influence of price-based demand response (DR) for industrial, commercial, and residential loads is taken into account. Finally, the proposed problem is modeled as an optimization problem while the related decision variables are adjusted by a modified version of virus colony search (VCS) algorithm based on chaos theory in order to increase the exploitation and exploration terms. The proposed approach is tested on an MG system with several scenarios through analyzing the effect of DR programs based on the total cost reduction. As shown in the simulation results, DR highly reduced total cost (20–26% related to the case without DR), in which voltage dip (maximum 1.4%) and power deviation (maximum 1.2%) were enhanced.

Suggested Citation

  • Huang, Shoujun & Abedinia, Oveis, 2021. "Investigation in economic analysis of microgrids based on renewable energy uncertainty and demand response in the electricity market," Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:energy:v:225:y:2021:i:c:s0360544221004965
    DOI: 10.1016/j.energy.2021.120247
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221004965
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120247?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Hongjun & Xu, Song & Liu, Youbo & Wang, Lingfeng & Xiang, Yingmeng & Liu, Junyong, 2020. "Decentralized optimal operation model for cooperative microgrids considering renewable energy uncertainties," Applied Energy, Elsevier, vol. 262(C).
    2. Ju, Liwei & Tan, Zhongfu & Yuan, Jinyun & Tan, Qingkun & Li, Huanhuan & Dong, Fugui, 2016. "A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response," Applied Energy, Elsevier, vol. 171(C), pages 184-199.
    3. Tabar, Vahid Sohrabi & Ghassemzadeh, Saeid & Tohidi, Sajjad, 2019. "Energy management in hybrid microgrid with considering multiple power market and real time demand response," Energy, Elsevier, vol. 174(C), pages 10-23.
    4. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2015. "Assessment of direct normal irradiance and cloud connections using satellite data over Australia," Applied Energy, Elsevier, vol. 143(C), pages 301-311.
    5. Rajamand, Sahbasadat, 2020. "Effect of demand response program of loads in cost optimization of microgrid considering uncertain parameters in PV/WT, market price and load demand," Energy, Elsevier, vol. 194(C).
    6. Rahmani-Andebili, Mehdi, 2017. "Stochastic, adaptive, and dynamic control of energy storage systems integrated with renewable energy sources for power loss minimization," Renewable Energy, Elsevier, vol. 113(C), pages 1462-1471.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Yu & Ali, Mazhar & Khan, Imran Ali & Yinling, Wang & Mostafa, Aziz, 2024. "Presenting a model for decentralized operation based on the internet of things in a system multiple microgrids," Energy, Elsevier, vol. 293(C).
    2. Guo, Tianyu & Guo, Qi & Huang, Libin & Guo, Haiping & Lu, Yuanhong & Tu, Liang, 2023. "Microgrid source-network-load-storage master-slave game optimization method considering the energy storage overcharge/overdischarge risk," Energy, Elsevier, vol. 282(C).
    3. Yang, Chengying & Wu, Zhixin & Li, Xuetao & Fars, Ashk, 2024. "Risk-constrained stochastic scheduling for energy hub: Integrating renewables, demand response, and electric vehicles," Energy, Elsevier, vol. 288(C).
    4. Rusche, Simon & Weissflog., Jan & Wenninger, Simon & Häckel, Björn, 2023. "How flexible are energy flexibilities? Developing a flexibility score for revenue and risk analysis in industrial demand-side management," Applied Energy, Elsevier, vol. 345(C).
    5. Wang, Fei & Lu, Xiaoxing & Chang, Xiqiang & Cao, Xin & Yan, Siqing & Li, Kangping & Duić, Neven & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Household profile identification for behavioral demand response: A semi-supervised learning approach using smart meter data," Energy, Elsevier, vol. 238(PB).
    6. Fan, Yukun & Liu, Weifeng & Zhu, Feilin & Wang, Sen & Yue, Hao & Zeng, Yurou & Xu, Bin & Zhong, Ping-an, 2024. "Short-term stochastic multi-objective optimization scheduling of wind-solar-hydro hybrid system considering source-load uncertainties," Applied Energy, Elsevier, vol. 372(C).
    7. Wang, Liying & Lin, Jialin & Dong, Houqi & Wang, Yuqing & Zeng, Ming, 2023. "Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system," Energy, Elsevier, vol. 270(C).
    8. Gelchu, Milky Ali & Ehnberg, Jimmy & Shiferaw, Dereje & Ahlgren, Erik O., 2023. "Impact of demand-side management on the sizing of autonomous solar PV-based mini-grids," Energy, Elsevier, vol. 278(PA).
    9. Anna Auza & Ehsan Asadi & Behrang Chenari & Manuel Gameiro da Silva, 2023. "A Systematic Review of Uncertainty Handling Approaches for Electric Grids Considering Electrical Vehicles," Energies, MDPI, vol. 16(13), pages 1-25, June.
    10. Weiqing Sun & Yao Gong & Jing Luo, 2023. "Energy Storage Configuration of Distribution Networks Considering Uncertainties of Generalized Demand-Side Resources and Renewable Energies," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    11. Duan, Pengfei & Zhao, Bingxu & Zhang, Xinghui & Fen, Mengdan, 2023. "A day-ahead optimal operation strategy for integrated energy systems in multi-public buildings based on cooperative game," Energy, Elsevier, vol. 275(C).
    12. Yu, Jie & Chen, Lu & Wang, Qiong & Zhang, Xi & Sun, Qinghe, 2024. "Towards sustainable regional energy solutions: An optimized operational model for integrated energy systems with price-responsive planning," Energy, Elsevier, vol. 305(C).
    13. Lau, Jat-Syu & Jiang, Yihuo & Li, Ziyuan & Qian, Qian, 2023. "Stochastic trading of storage systems in short term electricity markets considering intraday demand response market," Energy, Elsevier, vol. 280(C).
    14. Lee, Juyong & Cho, Youngsang, 2022. "Determinants of reserve margin volatility: A new approach toward managing energy supply and demand," Energy, Elsevier, vol. 252(C).
    15. Ma, Jinpeng & Wu, Shengbin & Raad, Erfan Ahli, 2023. "Renewable source uncertainties effects in multi-carrier microgrids based on an intelligent algorithm," Energy, Elsevier, vol. 265(C).
    16. Tan, Caixia & Wang, Jing & Geng, Shiping & Pu, Lei & Tan, Zhongfu, 2021. "Three-level market optimization model of virtual power plant with carbon capture equipment considering copula–CVaR theory," Energy, Elsevier, vol. 237(C).
    17. Kalim Ullah & Quanyuan Jiang & Guangchao Geng & Rehan Ali Khan & Sheraz Aslam & Wahab Khan, 2022. "Optimization of Demand Response and Power-Sharing in Microgrids for Cost and Power Losses," Energies, MDPI, vol. 15(9), pages 1-22, April.
    18. Erdal Irmak & Ersan Kabalci & Yasin Kabalci, 2023. "Digital Transformation of Microgrids: A Review of Design, Operation, Optimization, and Cybersecurity," Energies, MDPI, vol. 16(12), pages 1-58, June.
    19. Kaiyan Wang & Xueyan Wang & Rong Jia & Jian Dang & Yan Liang & Haodong Du, 2022. "Research on Coupled Cooperative Operation of Medium- and Long-Term and Spot Electricity Transaction for Multi-Energy System: A Case Study in China," Sustainability, MDPI, vol. 14(17), pages 1-20, August.
    20. Zhang, Tairan & Sobhani, Behrouz, 2023. "Optimal economic programming of an energy hub in the power system while taking into account the uncertainty of renewable resources, risk-taking and electric vehicles using a developed routing method," Energy, Elsevier, vol. 271(C).
    21. Yan, Zhongzhen & Zhu, Xinyuan & Chang, Yiming & Wang, Xianglong & Ye, Zhiwei & Xu, Zhigang & Fars, Ashk, 2023. "Renewable energy effects on energy management based on demand response in microgrids environment," Renewable Energy, Elsevier, vol. 213(C), pages 205-217.
    22. Wang, Yajun & Wang, Jidong & Cao, Man & Kong, Xiangyu & Abderrahim, Bouchedjira & Yuan, Long & Vartosh, Aris, 2023. "Dynamic emission dispatch considering the probabilistic model with multiple smart energy system players based on a developed fuzzy theory-based harmony search algorithm," Energy, Elsevier, vol. 269(C).
    23. Zhang, Honghui & Chen, Yuanyuan & Liu, Kuili & Dehan, Sim, 2022. "A novel power system scheduling based on hydrogen-based micro energy hub," Energy, Elsevier, vol. 251(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
    2. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Hannes Agabus, 2023. "Market Mechanisms and Trading in Microgrid Local Electricity Markets: A Comprehensive Review," Energies, MDPI, vol. 16(5), pages 1-52, February.
    4. Li, Jinghua & Lu, Bo & Wang, Zhibang & Zhu, Mengshu, 2021. "Bi-level optimal planning model for energy storage systems in a virtual power plant," Renewable Energy, Elsevier, vol. 165(P2), pages 77-95.
    5. Song, Xiaoling & Wang, Yudong & Zhang, Zhe & Shen, Charles & Peña-Mora, Feniosky, 2021. "Economic-environmental equilibrium-based bi-level dispatch strategy towards integrated electricity and natural gas systems," Applied Energy, Elsevier, vol. 281(C).
    6. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    7. Li, Haoran & Zhang, Chenghui & Sun, Bo, 2021. "Optimal design for component capacity of integrated energy system based on the active dispatch mode of multiple energy storages," Energy, Elsevier, vol. 227(C).
    8. Fabio Massaro & Maria Luisa Di Silvestre & Marco Ferraro & Francesco Montana & Eleonora Riva Sanseverino & Salvatore Ruffino, 2024. "Energy Hub Model for the Massive Adoption of Hydrogen in Power Systems," Energies, MDPI, vol. 17(17), pages 1-31, September.
    9. Chen, Yizhong & He, Li & Li, Jing, 2017. "Stochastic dominant-subordinate-interactive scheduling optimization for interconnected microgrids with considering wind-photovoltaic-based distributed generations under uncertainty," Energy, Elsevier, vol. 130(C), pages 581-598.
    10. Alain Aoun & Mehdi Adda & Adrian Ilinca & Mazen Ghandour & Hussein Ibrahim, 2024. "Optimizing Virtual Power Plant Management: A Novel MILP Algorithm to Minimize Levelized Cost of Energy, Technical Losses, and Greenhouse Gas Emissions," Energies, MDPI, vol. 17(16), pages 1-23, August.
    11. Yunlong Zhang & Panhong Zhang & Sheng Du & Hanlin Dong, 2024. "Economic Optimal Scheduling of Integrated Energy System Considering Wind–Solar Uncertainty and Power to Gas and Carbon Capture and Storage," Energies, MDPI, vol. 17(11), pages 1-26, June.
    12. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Dai, Guyu & Chai, Jianxue, 2022. "Cost compensation method for PEVs participating in dynamic economic dispatch based on carbon trading mechanism," Energy, Elsevier, vol. 239(PA).
    13. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    14. Abhnil Amtesh Prasad & Merlinde Kay, 2020. "Assessment of Simulated Solar Irradiance on Days of High Intermittency Using WRF-Solar," Energies, MDPI, vol. 13(2), pages 1-22, January.
    15. Jani, Ali & Karimi, Hamid & Jadid, Shahram, 2022. "Two-layer stochastic day-ahead and real-time energy management of networked microgrids considering integration of renewable energy resources," Applied Energy, Elsevier, vol. 323(C).
    16. Nonnenmacher, Lukas & Kaur, Amanpreet & Coimbra, Carlos F.M., 2016. "Day-ahead resource forecasting for concentrated solar power integration," Renewable Energy, Elsevier, vol. 86(C), pages 866-876.
    17. Salkuti, Surender Reddy, 2019. "Day-ahead thermal and renewable power generation scheduling considering uncertainty," Renewable Energy, Elsevier, vol. 131(C), pages 956-965.
    18. Zhiming Lu & Youting Li & Guying Zhuo & Chuanbo Xu, 2023. "Configuration Optimization of Hydrogen-Based Multi-Microgrid Systems under Electricity Market Trading and Different Hydrogen Production Strategies," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    19. Kong, Xiangyu & Sun, Fangyuan & Huo, Xianxu & Li, Xue & Shen, Yu, 2020. "Hierarchical optimal scheduling method of heat-electricity integrated energy system based on Power Internet of Things," Energy, Elsevier, vol. 210(C).
    20. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:225:y:2021:i:c:s0360544221004965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.