IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v221y2021ics0360544220327146.html
   My bibliography  Save this article

On the quantitative relationship of the in-cylinder heat to work conversion process of natural gas spark ignited engine under steady state and transient operation conditions

Author

Listed:
  • Xia, Yan
  • Li, Yangyang
  • Liao, Cheng
  • Liu, Jingping
  • Wang, Shuqian
  • Qiao, Junhao
  • Zhang, Shijia

Abstract

The performance characteristics of an automotive engine under the road operation conditions, i.e. under transient torque and power output conditions, as well as the instant in-cylinder thermal to work conversion efficiency, are very important for the vehicle’s performance and fuel economy, but difficult to measure. In an effort to identify and confirm the quantitative relationships between the engine performance parameters with controlling and operating parameters (such as the engine speed, intake pressure, lambda and so on) for natural gas spark ignited engines, the controlling equations of the in-cylinder indicated thermal efficiency and indicated mean effective pressure are derived. The results show that the derived controlling equations also demonstrate good agreement with experimental data under both steady state and transient operation conditions. This research confirms the feasibility to identify indirectly the natural gas spark ignited engine’s performance under the road conditions through analyzing the measureable or available controlling and operational parameters, and provides a method for on-line analysis and optimization of the engine operation parameters.

Suggested Citation

  • Xia, Yan & Li, Yangyang & Liao, Cheng & Liu, Jingping & Wang, Shuqian & Qiao, Junhao & Zhang, Shijia, 2021. "On the quantitative relationship of the in-cylinder heat to work conversion process of natural gas spark ignited engine under steady state and transient operation conditions," Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544220327146
    DOI: 10.1016/j.energy.2020.119607
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220327146
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119607?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    2. Duan, Xiongbo & Li, Yangyang & Liu, Jingping & Guo, Genmiao & Fu, Jianqin & Zhang, Quanchang & Zhang, Shiheng & Liu, Weiqiang, 2019. "Experimental study the effects of various compression ratios and spark timing on performance and emission of a lean-burn heavy-duty spark ignition engine fueled with methane gas and hydrogen blends," Energy, Elsevier, vol. 169(C), pages 558-571.
    3. Reham, S.S. & Masjuki, H.H. & Kalam, M.A. & Shancita, I. & Rizwanul Fattah, I.M. & Ruhul, A.M., 2015. "Study on stability, fuel properties, engine combustion, performance and emission characteristics of biofuel emulsion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1566-1579.
    4. Li, Yangyang & Duan, Xiongbo & Fu, Jianqin & Liu, Jingping & Wang, Shuqian & Dong, Hao & Xie, Yunkun, 2019. "Development of a method for on-board measurement of instant engine torque and fuel consumption rate based on direct signal measurement and RGF modelling under vehicle transient operating conditions," Energy, Elsevier, vol. 189(C).
    5. Zhang, Qiang & Li, Menghan & Shao, Sidong, 2015. "Combustion process and emissions of a heavy-duty engine fueled with directly injected natural gas and pilot diesel," Applied Energy, Elsevier, vol. 157(C), pages 217-228.
    6. Deng, Banglin & Li, Qing & Chen, Yangyang & Li, Meng & Liu, Aodong & Ran, Jiaqi & Xu, Ying & Liu, Xiaoqiang & Fu, Jianqin & Feng, Renhua, 2019. "The effect of air/fuel ratio on the CO and NOx emissions for a twin-spark motorcycle gasoline engine under wide range of operating conditions," Energy, Elsevier, vol. 169(C), pages 1202-1213.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huiyong Yang & Lei Zhang & Jingping Liu & Jianqin Fu & Dazi Shen & Zhipeng Yuan, 2023. "Development and Validation of a Variable Displacement Variable Compression Ratio Miller Cycle Technology on an Automotive Gasoline Engine," Energies, MDPI, vol. 16(11), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiao, Junhao & Liu, Jingping & Liang, Jichao & Jia, Dongdong & Wang, Rumin & Shen, Dazi & Duan, Xiongbo, 2023. "Experimental investigation the effects of Miller cycle coupled with asynchronous intake valves on cycle-to-cycle variations and performance of the SI engine," Energy, Elsevier, vol. 263(PD).
    2. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    3. He, Qiang & Yang, Yang & Luo, Chang & Zhai, Jun & Luo, Ronghua & Fu, Chunyun, 2022. "Energy recovery strategy optimization of dual-motor drive electric vehicle based on braking safety and efficient recovery," Energy, Elsevier, vol. 248(C).
    4. Van Chien Pham & Jae-Hyuk Choi & Beom-Seok Rho & Jun-Soo Kim & Kyunam Park & Sang-Kyun Park & Van Vang Le & Won-Ju Lee, 2021. "A Numerical Study on the Combustion Process and Emission Characteristics of a Natural Gas-Diesel Dual-Fuel Marine Engine at Full Load," Energies, MDPI, vol. 14(5), pages 1-28, March.
    5. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    6. Duggal, Angel Swastik & Singh, Rajesh & Gehlot, Anita & Gupta, Lovi Raj & Akram, Sheik Vaseem & Prakash, Chander & Singh, Sunpreet & Kumar, Raman, 2021. "Infrastructure, mobility and safety 4.0: Modernization in road transportation," Technology in Society, Elsevier, vol. 67(C).
    7. Jingrui Li & Jietuo Wang & Teng Liu & Jingjin Dong & Bo Liu & Chaohui Wu & Ying Ye & Hu Wang & Haifeng Liu, 2019. "An Investigation of the Influence of Gas Injection Rate Shape on High-Pressure Direct-Injection Natural Gas Marine Engines," Energies, MDPI, vol. 12(13), pages 1-18, July.
    8. Ismael, Mhadi A. & A. Aziz, A. Rashid & Mohammed, Salah E. & Zainal A, Ezrann Z. & Baharom, Masri B. & Hagos, Ftwi Yohaness, 2021. "Macroscopic and microscopic spray structure of water-in-diesel emulsions," Energy, Elsevier, vol. 223(C).
    9. Tang, Qingsong & Yang, Yang & Luo, Chang & Yang, Zhong & Fu, Chunyun, 2022. "A novel electro-hydraulic compound braking system coordinated control strategy for a four-wheel-drive pure electric vehicle driven by dual motors," Energy, Elsevier, vol. 241(C).
    10. Awad, Omar I. & Ali, Obed M. & Mamat, Rizalman & Abdullah, A.A. & Najafi, G. & Kamarulzaman, M.K. & Yusri, I.M. & Noor, M.M., 2017. "Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1232-1242.
    11. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    12. Ismael, Mhadi A. & Heikal, Morgan R. & Aziz, A. Rashid A. & Syah, Firman & Zainal A., Ezrann Z. & Crua, Cyril, 2018. "The effect of fuel injection equipment on the dispersed phase of water-in-diesel emulsions," Applied Energy, Elsevier, vol. 222(C), pages 762-771.
    13. Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    14. Kumar, Himansh & Sarma, A.K. & Kumar, Pramod, 2020. "A comprehensive review on preparation, characterization, and combustion characteristics of microemulsion based hybrid biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    15. Vellaiyan, Suresh, 2020. "Combustion, performance and emission evaluation of a diesel engine fueled with soybean biodiesel and its water blends," Energy, Elsevier, vol. 201(C).
    16. Duan, Xiongbo & Feng, Lining & Liu, Haibo & Jiang, Pengfei & Chen, Chao & Sun, Zhiqiang, 2023. "Experimental investigation on exhaust emissions of a heavy-duty vehicle powered by a methanol-fuelled spark ignition engine under world Harmonized Transient Cycle and actual on-road driving conditions," Energy, Elsevier, vol. 282(C).
    17. Yin, Xiaojun & Sun, Nannan & Sun, Ting & Shen, Hongguang & Mehra, Roopesh Kumar & Liu, Junlong & Wang, Ying & Yang, Bo & Zeng, Ke, 2022. "Experimental investigation the effects of spark discharge characteristics on the heavy-duty spark ignition natural gas engine at low load condition," Energy, Elsevier, vol. 239(PC).
    18. Feng, Renhua & Li, Guanghua & Sun, Zhengwei & Hu, Xiulin & Deng, Banglin & Fu, Jianqin, 2023. "Potential of emission reduction of a turbo-charged non-road diesel engine without aftertreatment under multiple operating scenarios," Energy, Elsevier, vol. 263(PB).
    19. Shen, Bo & Su, Yan & Yu, Hao & Zhang, Yulin & Lang, Maochun & Yang, He, 2023. "Experimental study on the effect of injection strategies on the combustion and emissions characteristic of gasoline/methanol dual-fuel turbocharged engine under high load," Energy, Elsevier, vol. 282(C).
    20. Zhichao Zhao & Lu Li & Yang Ou & Yi Wang & Shaoyang Wang & Jing Yu & Renhua Feng, 2023. "A Comparative Study on the Energy Flow of Electric Vehicle Batteries among Different Environmental Temperatures," Energies, MDPI, vol. 16(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544220327146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.