IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v217y2021ics0360544220324506.html
   My bibliography  Save this article

Impact of nitrogen on the industrial feasibility of biodiesel production from lipid accumulated in oleaginous yeast with wastewater sludge and crude glycerol

Author

Listed:
  • Chen, Jiaxin
  • Zhang, Xiaolei
  • Tyagi, Rajeshwar Dayal

Abstract

In this study, oleaginous yeast Trichosporon oleaginosus was cultivated in wastewater sludge and crude glycerol medium for lipid production. The sufficiency of nitrogen in sludge was verified by conducting the experiments with and without the addition of NH4Cl in the medium. Biomass production, lipid production and lipid content of the fermentation with NH4Cl addition were 55.33 g/L, 26.98 g/L and 48.77% (w/w), respectively; however, they were 42.66 g/L, 17.88 g/L and 41.91% (w/w) in the one without addition of NH4Cl, respectively. The process of biodiesel produced from the lipid cultivated with sludge and crude glycerol could provide net energy gain and greenhouse gas emission reduction. The estimated biodiesel production cost in this study was 630 US $/tonne with NH4Cl addition and 860 $/tonne without NH4Cl addition, respectively. Compared to the current commercial biodiesel price (900 US $/tonne), biodiesel production from wastewater sludge and crude glycerol is very competitive. The study provides an insight of sustainable bioenergy production system from wastewater sudge.

Suggested Citation

  • Chen, Jiaxin & Zhang, Xiaolei & Tyagi, Rajeshwar Dayal, 2021. "Impact of nitrogen on the industrial feasibility of biodiesel production from lipid accumulated in oleaginous yeast with wastewater sludge and crude glycerol," Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:energy:v:217:y:2021:i:c:s0360544220324506
    DOI: 10.1016/j.energy.2020.119343
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220324506
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119343?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kong, Pei San & Aroua, Mohamed Kheireddine & Daud, Wan Mohd Ashri Wan, 2016. "Conversion of crude and pure glycerol into derivatives: A feasibility evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 533-555.
    2. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar D. & Surampalli, Rao Y., 2013. "Energy balance and greenhouse gas emissions of biodiesel production from oil derived from wastewater and wastewater sludge," Renewable Energy, Elsevier, vol. 55(C), pages 392-403.
    3. Yuan, Tian & Cheng, Yanfei & Zhang, Zhenya & Lei, Zhongfang & Shimizu, Kazuya, 2019. "Comparative study on hydrothermal treatment as pre- and post-treatment of anaerobic digestion of primary sludge: Focus on energy balance, resources transformation and sludge dewaterability," Applied Energy, Elsevier, vol. 239(C), pages 171-180.
    4. Dong, Tao & Knoshaug, Eric P. & Pienkos, Philip T. & Laurens, Lieve M.L., 2016. "Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review," Applied Energy, Elsevier, vol. 177(C), pages 879-895.
    5. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar D. & Surampalli, RaoY. & Valéro, Jose R., 2014. "Wastewater sludge as raw material for microbial oils production," Applied Energy, Elsevier, vol. 135(C), pages 192-201.
    6. Hejna, Aleksander & Kosmela, Paulina & Formela, Krzysztof & Piszczyk, Łukasz & Haponiuk, Józef T., 2016. "Potential applications of crude glycerol in polymer technology–Current state and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 449-475.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuengcharoenphanich, Nuttha & Watsuntorn, Wannapawn & Qi, Wei & Wang, Zhongming & Hu, Yunzi & Chulalaksananukul, Warawut, 2023. "The potential of biodiesel production from grasses in Thailand through consolidated bioprocessing using a cellulolytic oleaginous yeast, Cyberlindnera rhodanensis CU-CV7," Energy, Elsevier, vol. 263(PB).
    2. Zhao, Man & Wang, Yanan & Zhou, Wenting & Zhou, Wei & Gong, Zhiwei, 2023. "Co-valorization of crude glycerol and low-cost substrates via oleaginous yeasts to micro-biodiesel: Status and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Quan (Sophia) & McNutt, Josiah & Yang, Jie, 2017. "Utilization of the residual glycerol from biodiesel production for renewable energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 63-76.
    2. Zhao, Man & Wang, Yanan & Zhou, Wenting & Zhou, Wei & Gong, Zhiwei, 2023. "Co-valorization of crude glycerol and low-cost substrates via oleaginous yeasts to micro-biodiesel: Status and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    3. di Bitonto, Luigi & Locaputo, Vito & D'Ambrosio, Valeria & Pastore, Carlo, 2020. "Direct Lewis-Brønsted acid ethanolysis of sewage sludge for production of liquid fuels," Applied Energy, Elsevier, vol. 259(C).
    4. Monteiro, Marcos Roberto & Kugelmeier, Cristie Luis & Pinheiro, Rafael Sanaiotte & Batalha, Mario Otávio & da Silva César, Aldara, 2018. "Glycerol from biodiesel production: Technological paths for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 109-122.
    5. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar D. & Surampalli, RaoY. & Valéro, Jose R., 2014. "Wastewater sludge as raw material for microbial oils production," Applied Energy, Elsevier, vol. 135(C), pages 192-201.
    6. Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.
    7. Foteini Sakaveli & Maria Petala & Vasilios Tsiridis & Efthymios Darakas, 2024. "Enhancing Methane Yield in Anaerobic Co-Digestion of Primary Sewage Sludge: A Comprehensive Review on Potential Additives and Strategies," Waste, MDPI, vol. 2(1), pages 1-29, January.
    8. Cornejo, A. & Barrio, I. & Campoy, M. & Lázaro, J. & Navarrete, B., 2017. "Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1400-1413.
    9. Siwina, Siraprapha & Leesing, Ratanaporn, 2021. "Bioconversion of durian (Durio zibethinus Murr.) peel hydrolysate into biodiesel by newly isolated oleaginous yeast Rhodotorula mucilaginosa KKUSY14," Renewable Energy, Elsevier, vol. 163(C), pages 237-245.
    10. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    11. Liu, Yang & He, Pinjing & Duan, Haowen & Shao, Liming & Lü, Fan, 2021. "Low calcium dosage favors methanation of long-chain fatty acids," Applied Energy, Elsevier, vol. 285(C).
    12. Bet-Moushoul, Elsie & Farhadi, Khalil & Mansourpanah, Yaghoub & Molaie, Rahim & Forough, Mehrdad & Nikbakht, Ali Mohammad, 2016. "Development of novel Ag/bauxite nanocomposite as a heterogeneous catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 92(C), pages 12-21.
    13. Dejian Yu & Sun Meng, 2018. "An overview of biomass energy research with bibliometric indicators," Energy & Environment, , vol. 29(4), pages 576-590, June.
    14. Nugroho Adi Sasongko & Ryozo Noguchi & Junko Ito & Mikihide Demura & Sosaku Ichikawa & Mitsutoshi Nakajima & Makoto M. Watanabe, 2018. "Engineering Study of a Pilot Scale Process Plant for Microalgae-Oil Production Utilizing Municipal Wastewater and Flue Gases: Fukushima Pilot Plant," Energies, MDPI, vol. 11(7), pages 1-24, June.
    15. Liu, Xiaoguang & Wang, Qian & Tang, Yuanzhi & Pavlostathis, Spyros G., 2021. "A comparative study on biogas production, energy balance, and nutrients conversion with inter-stage hydrothermal treatment of sewage sludge," Applied Energy, Elsevier, vol. 288(C).
    16. Collett, James R. & Billing, Justin M. & Meyer, Pimphan A. & Schmidt, Andrew J. & Remington, A. Brook & Hawley, Erik R. & Hofstad, Beth A. & Panisko, Ellen A. & Dai, Ziyu & Hart, Todd R. & Santosa, Da, 2019. "Renewable diesel via hydrothermal liquefaction of oleaginous yeast and residual lignin from bioconversion of corn stover," Applied Energy, Elsevier, vol. 233, pages 840-853.
    17. Kwak, Minsoo & Kim, Donghyun & Kim, Sungwhan & Lee, Hansol & Chang, Yong Keun, 2020. "Solvent screening and process optimization for high shear-assisted lipid extraction from wet cake of Nannochloropsis sp," Renewable Energy, Elsevier, vol. 149(C), pages 1395-1405.
    18. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    19. Chen, Hui & Wang, Jie & Zheng, Yanli & Zhan, Jiao & He, Chenliu & Wang, Qiang, 2018. "Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation," Applied Energy, Elsevier, vol. 211(C), pages 296-305.
    20. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar Dayal & Drogui, Patrick & Surampalli, Rao Y., 2016. "Ultrasonication aided biodiesel production from one-step and two-step transesterification of sludge derived lipid," Energy, Elsevier, vol. 94(C), pages 401-408.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:217:y:2021:i:c:s0360544220324506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.