IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v212y2020ics0360544220317953.html
   My bibliography  Save this article

Computational investigation of partial admission effects on the flow field of a tesla turbine for ORC applications

Author

Listed:
  • Pacini, Leonardo
  • Ciappi, Lorenzo
  • Talluri, Lorenzo
  • Fiaschi, Daniele
  • Manfrida, Giampaolo
  • Smolka, Jacek

Abstract

Over recent years, the Tesla turbine gained a renewed interest from the scientific community, as its simple structure guarantees low cost and reliability. These are key aspects of the success of an expander suitable for small-distributed energy systems.

Suggested Citation

  • Pacini, Leonardo & Ciappi, Lorenzo & Talluri, Lorenzo & Fiaschi, Daniele & Manfrida, Giampaolo & Smolka, Jacek, 2020. "Computational investigation of partial admission effects on the flow field of a tesla turbine for ORC applications," Energy, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:energy:v:212:y:2020:i:c:s0360544220317953
    DOI: 10.1016/j.energy.2020.118687
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220317953
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118687?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dumont, Olivier & Parthoens, Antoine & Dickes, Rémi & Lemort, Vincent, 2018. "Experimental investigation and optimal performance assessment of four volumetric expanders (scroll, screw, piston and roots) tested in a small-scale organic Rankine cycle system," Energy, Elsevier, vol. 165(PA), pages 1119-1127.
    2. Ciappi, L. & Fiaschi, D. & Niknam, P.H. & Talluri, L., 2019. "Computational investigation of the flow inside a Tesla turbine rotor," Energy, Elsevier, vol. 173(C), pages 207-217.
    3. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    4. Yahya Sheikhnejad & João Simões & Nelson Martins, 2020. "Energy Harvesting by a Novel Substitution for Expansion Valves: Special Focus on City Gate Stations of High-Pressure Natural Gas Pipelines," Energies, MDPI, vol. 13(4), pages 1-18, February.
    5. Mert, Mehmet Selçuk & Dilmaç, Ömer Faruk & Özkan, Semra & Karaca, Fatma & Bolat, Esen, 2012. "Exergoeconomic analysis of a cogeneration plant in an iron and steel factory," Energy, Elsevier, vol. 46(1), pages 78-84.
    6. Manfrida, G. & Pacini, L. & Talluri, L., 2018. "An upgraded Tesla turbine concept for ORC applications," Energy, Elsevier, vol. 158(C), pages 33-40.
    7. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    8. Fiaschi, Daniele & Manfrida, Giampaolo & Maraschiello, Francesco, 2015. "Design and performance prediction of radial ORC turboexpanders," Applied Energy, Elsevier, vol. 138(C), pages 517-532.
    9. Manente, Giovanni & Lazzaretto, Andrea & Bonamico, Eleonora, 2017. "Design guidelines for the choice between single and dual pressure layouts in organic Rankine cycle (ORC) systems," Energy, Elsevier, vol. 123(C), pages 413-431.
    10. Badami, M. & Mura, M., 2010. "Exergetic analysis of an innovative small scale combined cycle cogeneration system," Energy, Elsevier, vol. 35(6), pages 2535-2543.
    11. Talluri, L. & Fiaschi, D. & Neri, G. & Ciappi, L., 2018. "Design and optimization of a Tesla turbine for ORC applications," Applied Energy, Elsevier, vol. 226(C), pages 300-319.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gürgen, Samet & Altın, İsmail, 2022. "Novel decision-making strategy for working fluid selection in Organic Rankine Cycle: A case study for waste heat recovery of a marine diesel engine," Energy, Elsevier, vol. 252(C).
    2. Wang, Hanwei & Luo, Kai & Huang, Chuang & Zou, Aihong & Li, Daijin & Qin, Kan, 2022. "Numerical investigation of partial admission losses in radial inflow turbines," Energy, Elsevier, vol. 239(PA).
    3. Thomazoni, André Luis Ribeiro & Ermel, Conrado & Schneider, Paulo Smith & Vieira, Lara Werncke & Hunt, Julian David & Ferreira, Sandro Barros & Rech, Charles & Gouvêa, Vinicius Santorum, 2022. "Influence of operational parameters on the performance of Tesla turbines: Experimental investigation of a small-scale turbine," Energy, Elsevier, vol. 261(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Talluri, Lorenzo & Dumont, Olivier & Manfrida, Giampaolo & Lemort, Vincent & Fiaschi, Daniele, 2020. "Geometry definition and performance assessment of Tesla turbines for ORC," Energy, Elsevier, vol. 211(C).
    2. Thomazoni, André Luis Ribeiro & Ermel, Conrado & Schneider, Paulo Smith & Vieira, Lara Werncke & Hunt, Julian David & Ferreira, Sandro Barros & Rech, Charles & Gouvêa, Vinicius Santorum, 2022. "Influence of operational parameters on the performance of Tesla turbines: Experimental investigation of a small-scale turbine," Energy, Elsevier, vol. 261(PB).
    3. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    4. Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
    5. Li, Jian & Yang, Zhen & Hu, Shuozhuo & Yang, Fubin & Duan, Yuanyuan, 2020. "Thermo-economic analyses and evaluations of small-scale dual-pressure evaporation organic Rankine cycle system using pure fluids," Energy, Elsevier, vol. 206(C).
    6. Ambra Giovannelli & Erika Maria Archilei & Coriolano Salvini, 2020. "Two-Stage Radial Turbine for a Small Waste Heat Recovery Organic Rankine Cycle (ORC) Plant," Energies, MDPI, vol. 13(5), pages 1-17, February.
    7. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    8. M. de Oliveira Junior, Maury & T. Maia, Antônio A. & P. Porto, Matheus, 2020. "Organic Rankine Energy Storage (ORES) system," Energy, Elsevier, vol. 204(C).
    9. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    10. Moradi, Ramin & Habib, Emanuele & Bocci, Enrico & Cioccolanti, Luca, 2020. "Investigation on the use of a novel regenerative flow turbine in a micro-scale Organic Rankine Cycle unit," Energy, Elsevier, vol. 210(C).
    11. Campana, Claudio & Cioccolanti, Luca & Renzi, Massimiliano & Caresana, Flavio, 2019. "Experimental analysis of a small-scale scroll expander for low-temperature waste heat recovery in Organic Rankine Cycle," Energy, Elsevier, vol. 187(C).
    12. Lisheng Pan & Huaixin Wang, 2019. "Experimental Investigation on Performance of an Organic Rankine Cycle System Integrated with a Radial Flow Turbine," Energies, MDPI, vol. 12(4), pages 1-20, February.
    13. Imran, Muhammad & Haglind, Fredrik & Asim, Muhammad & Zeb Alvi, Jahan, 2018. "Recent research trends in organic Rankine cycle technology: A bibliometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 552-562.
    14. Osorio, Julian D. & Panwar, Mayank & Rivera-Alvarez, Alejandro & Chryssostomidis, Chrys & Hovsapian, Rob & Mohanpurkar, Manish & Chanda, Sayonsom & Williams, Herbert, 2020. "Enabling thermal efficiency improvement and waste heat recovery using liquid air harnessed from offshore renewable energy sources," Applied Energy, Elsevier, vol. 275(C).
    15. Al Jubori, Ayad M. & Al-Dadah, Raya & Mahmoud, Saad, 2017. "Performance enhancement of a small-scale organic Rankine cycle radial-inflow turbine through multi-objective optimization algorithm," Energy, Elsevier, vol. 131(C), pages 297-311.
    16. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    17. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
    18. Satanphol, K. & Pridasawas, W. & Suphanit, B., 2017. "A study on optimal composition of zeotropic working fluid in an Organic Rankine Cycle (ORC) for low grade heat recovery," Energy, Elsevier, vol. 123(C), pages 326-339.
    19. Pezzuolo, Alex & Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2016. "The ORC-PD: A versatile tool for fluid selection and Organic Rankine Cycle unit design," Energy, Elsevier, vol. 102(C), pages 605-620.
    20. Witanowski, Ł. & Klonowicz, P. & Lampart, P. & Suchocki, T. & Jędrzejewski, Ł. & Zaniewski, D. & Klimaszewski, P., 2020. "Optimization of an axial turbine for a small scale ORC waste heat recovery system," Energy, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:212:y:2020:i:c:s0360544220317953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.