IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v210y2020ics0360544220316376.html
   My bibliography  Save this article

Dynamic modelling and control of single, double and triple effect absorption refrigeration cycles

Author

Listed:
  • Kyriakides, Alexios-Spyridon
  • Papadopoulos, Athanasios I.
  • Seferlis, Panos
  • Hassan, Ibrahim

Abstract

The present study aims to design and investigate the performance of a multivariable PI controller for the control of single, double and triple effect absorption refrigeration (ABR) processes. Dynamic modeling of ABR has been previously reported in literature for single effect systems using LiBr/H2O and NH3/H2O and for double effect systems using LiBr/H2O, whereas there is a lack of such models for triple effect systems. With few exceptions, existing implementations employ reduced-order models, mainly focused on heat exchangers, whereas the rectification process is generally omitted. For the first time, comprehensive dynamic models that include the rectifier and a multivariable control scheme are presented for a) a double effect, and b) a triple effect ABR using NH3/H2O. The main control challenge is to efficiently meet cooling loads while maintaining the performance level expressed as sustainable energy usage. The control strategy consists of multiple temperature, flowrate, level and capacity control loops, in order for the system to withstand the effect of anticipated disturbances (ambient conditions variation and part load operation). The presented case study confirms the controller ability to achieve the desired dynamic behavior both in the case of performance optimization and part load operation.

Suggested Citation

  • Kyriakides, Alexios-Spyridon & Papadopoulos, Athanasios I. & Seferlis, Panos & Hassan, Ibrahim, 2020. "Dynamic modelling and control of single, double and triple effect absorption refrigeration cycles," Energy, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220316376
    DOI: 10.1016/j.energy.2020.118529
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220316376
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118529?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nienborg, Björn & Dalibard, Antoine & Schnabel, Lena & Eicker, Ursula, 2017. "Approaches for the optimized control of solar thermally driven cooling systems," Applied Energy, Elsevier, vol. 185(P1), pages 732-744.
    2. Ebrahimi, Khosrow & Jones, Gerard F. & Fleischer, Amy S., 2015. "Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration," Applied Energy, Elsevier, vol. 139(C), pages 384-397.
    3. Gkouletsos, Dimitris & Papadopoulos, Athanasios I. & Seferlis, Panos & Hassan, Ibrahim, 2019. "Systematic modeling under uncertainty of single, double and triple effect absorption refrigeration processes," Energy, Elsevier, vol. 183(C), pages 262-278.
    4. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Energy and economic analysis of a small hybrid solar-geothermal trigeneration system: A dynamic approach," Energy, Elsevier, vol. 208(C).
    5. Facci, Andrea Luigi & Andreassi, Luca & Ubertini, Stefano, 2014. "Optimization of CHCP (combined heat power and cooling) systems operation strategy using dynamic programming," Energy, Elsevier, vol. 66(C), pages 387-400.
    6. N’Tsoukpoe, K. Edem & Le Pierrès, Nolwenn & Luo, Lingai, 2012. "Numerical dynamic simulation and analysis of a lithium bromide/water long-term solar heat storage system," Energy, Elsevier, vol. 37(1), pages 346-358.
    7. Calise, Francesco & Dentice d'Accadia, Massimo & Piacentino, Antonio, 2014. "A novel solar trigeneration system integrating PVT (photovoltaic/thermal collectors) and SW (seawater) desalination: Dynamic simulation and economic assessment," Energy, Elsevier, vol. 67(C), pages 129-148.
    8. Palacín, F. & Monné, C. & Alonso, S., 2011. "Improvement of an existing solar powered absorption cooling system by means of dynamic simulation and experimental diagnosis," Energy, Elsevier, vol. 36(7), pages 4109-4118.
    9. Papadopoulos, Athanasios I. & Kyriakides, Alexios-Spyridon & Seferlis, Panos & Hassan, Ibrahim, 2019. "Absorption refrigeration processes with organic working fluid mixtures- a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 239-270.
    10. Calise, Francesco & Dentice d'Accadia, Massimo & Macaluso, Adriano & Vanoli, Laura & Piacentino, Antonio, 2016. "A novel solar-geothermal trigeneration system integrating water desalination: Design, dynamic simulation and economic assessment," Energy, Elsevier, vol. 115(P3), pages 1533-1547.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seferlis, Panos & Varbanov, Petar Sabev & Papadopoulos, Athanasios I. & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2021. "Sustainable design, integration, and operation for energy high-performance process systems," Energy, Elsevier, vol. 224(C).
    2. Kucuksayacigil, Fikri & Roni, Mohammad & Eksioglu, Sandra D. & Bhuiyan, Tanveer H. & Chen, Qiushi, 2022. "Optimal control to handle variations in moisture content and reactor in-feed rate," Energy, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calise, Francesco & Cappiello, Francesco L. & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2021. "Thermo-economic optimization of a novel hybrid renewable trigeneration plant," Renewable Energy, Elsevier, vol. 175(C), pages 532-549.
    2. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic modelling and thermoeconomic analysis of micro wind turbines and building integrated photovoltaic panels," Renewable Energy, Elsevier, vol. 160(C), pages 633-652.
    4. Kadam, Sambhaji T. & Gkouletsos, Dimitris & Hassan, Ibrahim & Rahman, Mohammad Azizur & Kyriakides, Alexios-Spyridon & Papadopoulos, Athanasios I. & Seferlis, Panos, 2020. "Investigation of binary, ternary and quaternary mixtures across solution heat exchanger used in absorption refrigeration and process modifications to improve cycle performance," Energy, Elsevier, vol. 198(C).
    5. Calise, Francesco & Macaluso, Adriano & Piacentino, Antonio & Vanoli, Laura, 2017. "A novel hybrid polygeneration system supplying energy and desalinated water by renewable sources in Pantelleria Island," Energy, Elsevier, vol. 137(C), pages 1086-1106.
    6. Abdelhay, AymanO. & Fath, HassanE.S. & Nada, S.A., 2020. "Solar driven polygeneration system for power, desalination and cooling," Energy, Elsevier, vol. 198(C).
    7. Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
    8. Calise, Francesco & Dentice d’Accadia, Massimo & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Transient analysis of solar polygeneration systems including seawater desalination: A comparison between linear Fresnel and evacuated solar collectors," Energy, Elsevier, vol. 172(C), pages 647-660.
    9. Calise, Francesco & d’Accadia, Massimo Dentice & Vicidomini, Maria, 2019. "Optimization and dynamic analysis of a novel polygeneration system producing heat, cool and fresh water," Renewable Energy, Elsevier, vol. 143(C), pages 1331-1347.
    10. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Energy and economic analysis of a small hybrid solar-geothermal trigeneration system: A dynamic approach," Energy, Elsevier, vol. 208(C).
    11. Guzović, Zvonimir & Duic, Neven & Piacentino, Antonio & Markovska, Natasa & Mathiesen, Brian Vad & Lund, Henrik, 2022. "Recent advances in methods, policies and technologies at sustainable energy systems development," Energy, Elsevier, vol. 245(C).
    12. Baby-Jean Robert Mungyeko Bisulandu & Rami Mansouri & Adrian Ilinca, 2023. "Diffusion Absorption Refrigeration Systems: An Overview of Thermal Mechanisms and Models," Energies, MDPI, vol. 16(9), pages 1-36, April.
    13. Francesco Calise & Massimo Dentice D’Accadia, 2016. "Simulation of Polygeneration Systems," Energies, MDPI, vol. 9(11), pages 1-9, November.
    14. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    15. Hosan, Shahadat & Rahman, Md Matiar & Karmaker, Shamal Chandra & Saha, Bidyut Baran, 2023. "Energy subsidies and energy technology innovation: Policies for polygeneration systems diffusion," Energy, Elsevier, vol. 267(C).
    16. Lan, Yun Cheng & Li, Cheng & Wang, Sui Lin, 2019. "Parabolic antenna snow melting and removal using waste heat from the transmitter room," Energy, Elsevier, vol. 181(C), pages 738-744.
    17. Cao, Yan & Dhahad, Hayder A. & Alsharif, Sameer & Sharma, Kamal & El.Shafy, Asem Saleh & Farhang, Babak & Mohammed, Adil Hussein, 2022. "Multi-objective optimizations and exergoeconomic analyses of a high-efficient bi-evaporator multigeneration system with freshwater unit," Renewable Energy, Elsevier, vol. 191(C), pages 699-714.
    18. Manal Ayyad Dhif Alshammry & Saqib Muneer, 2023. "The influence of economic development, capital formation, and internet use on environmental degradation in Saudi Arabia," Future Business Journal, Springer, vol. 9(1), pages 1-16, December.
    19. Yanfeng Liu & Yaxing Wang & Xi Luo, 2020. "Design and Operation Optimization of Distributed Solar Energy System Based on Dynamic Operation Strategy," Energies, MDPI, vol. 14(1), pages 1-26, December.
    20. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220316376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.