IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v208y2020ics0360544220315255.html
   My bibliography  Save this article

Short-term operation of microgrids with thermal and electrical loads under different uncertainties using information gap decision theory

Author

Listed:
  • Kia, M.
  • Shafiekhani, M.
  • Arasteh, H.
  • Hashemi, S.M.
  • Shafie-khah, M.
  • Catalão, J.P.S.

Abstract

The utilization of an Energy Management System (EMS) for the optimum scheduling of generation units, as well as demand side resources is essential due to the high penetration of Distributed Energy Resources (DERs) in microgrids (MGs), to achieve the desired objectives. As a result of the restructuring of the power systems and increasing the electricity prices during some periods in a day, demand side programs have been highly valuable by electricity customers. In this paper, a Demand Response (DR) model has been proposed to present the behavior of responsive controllable loads in response to the DR calls. Moreover, optimal scheduling of energy resources is developed for a typical MG by considering the presence of both electrical and thermal demands. Combined Heat and Power (CHP) units, boilers, wind turbines, storage devices, demand response resources (DRRs), as well as the power exchange possibility with the upstream wholesale market are the energy resources that have been considered as the portfolio of the decision maker. Furthermore, the uncertainty resources of the wind speeds and electrical load are handled by the Information Gap Decision Theory (IGDT) method. The performance of the proposed framework is comprehensively analyzed on the IEEE 33-bus test system. The advantage of the proposed methodology under the uncertainty conditions is analyzed by the Monte-Carlo simulation method when the different realization of the wind power and electrical load are considered.

Suggested Citation

  • Kia, M. & Shafiekhani, M. & Arasteh, H. & Hashemi, S.M. & Shafie-khah, M. & Catalão, J.P.S., 2020. "Short-term operation of microgrids with thermal and electrical loads under different uncertainties using information gap decision theory," Energy, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:energy:v:208:y:2020:i:c:s0360544220315255
    DOI: 10.1016/j.energy.2020.118418
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220315255
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soroudi, Alireza, 2013. "Robust optimization based self scheduling of hydro-thermal Genco in smart grids," Energy, Elsevier, vol. 61(C), pages 262-271.
    2. Karimi, Hamid & Jadid, Shahram, 2019. "Optimal microgrid operation scheduling by a novel hybrid multi-objective and multi-attribute decision-making framework," Energy, Elsevier, vol. 186(C).
    3. Kia, Mohsen & Nazar, Mehrdad Setayesh & Sepasian, Mohammad Sadegh & Heidari, Alireza & Siano, Pierluigi, 2017. "Optimal day ahead scheduling of combined heat and power units with electrical and thermal storage considering security constraint of power system," Energy, Elsevier, vol. 120(C), pages 241-252.
    4. Mazidi, Mohammadreza & Rezaei, Navid & Ghaderi, Abdolsalam, 2019. "Simultaneous power and heat scheduling of microgrids considering operational uncertainties: A new stochastic p-robust optimization approach," Energy, Elsevier, vol. 185(C), pages 239-253.
    5. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems)," Energy, Elsevier, vol. 55(C), pages 1044-1054.
    6. Hao Liang & Weihua Zhuang, 2014. "Stochastic Modeling and Optimization in a Microgrid: A Survey," Energies, MDPI, vol. 7(4), pages 1-24, March.
    7. Ji, L. & Niu, D.X. & Huang, G.H., 2014. "An inexact two-stage stochastic robust programming for residential micro-grid management-based on random demand," Energy, Elsevier, vol. 67(C), pages 186-199.
    8. Morais, Hugo & Kádár, Péter & Faria, Pedro & Vale, Zita A. & Khodr, H.M., 2010. "Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming," Renewable Energy, Elsevier, vol. 35(1), pages 151-156.
    9. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    10. Wang, Luhao & Li, Qiqiang & Ding, Ran & Sun, Mingshun & Wang, Guirong, 2017. "Integrated scheduling of energy supply and demand in microgrids under uncertainty: A robust multi-objective optimization approach," Energy, Elsevier, vol. 130(C), pages 1-14.
    11. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shafiekhani, Morteza & Ahmadi, Abdollah & Homaee, Omid & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Optimal bidding strategy of a renewable-based virtual power plant including wind and solar units and dispatchable loads," Energy, Elsevier, vol. 239(PD).
    2. Lin, Xiaojie & Lin, Xueru & Zhong, Wei & Zhou, Yi, 2023. "Predictive operation optimization of multi-energy virtual power plant considering behavior uncertainty of diverse stakeholders," Energy, Elsevier, vol. 280(C).
    3. Lumin Shi & Man-Wen Tian & As’ad Alizadeh & Ardashir Mohammadzadeh & Sayyad Nojavan, 2023. "Information Gap Decision Theory-Based Risk-Averse Scheduling of a Combined Heat and Power Hybrid Energy System," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    4. Shams, Mohammad H. & Shahabi, Majid & MansourLakouraj, Mohammad & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Adjustable robust optimization approach for two-stage operation of energy hub-based microgrids," Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arasteh, Hamidreza & Sepasian, Mohammad Sadegh & Vahidinasab, Vahid, 2016. "An aggregated model for coordinated planning and reconfiguration of electric distribution networks," Energy, Elsevier, vol. 94(C), pages 786-798.
    2. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Riccardo Iacobucci & Benjamin McLellan & Tetsuo Tezuka, 2018. "The Synergies of Shared Autonomous Electric Vehicles with Renewable Energy in a Virtual Power Plant and Microgrid," Energies, MDPI, vol. 11(8), pages 1-20, August.
    4. Izadbakhsh, Maziar & Gandomkar, Majid & Rezvani, Alireza & Ahmadi, Abdollah, 2015. "Short-term resource scheduling of a renewable energy based micro grid," Renewable Energy, Elsevier, vol. 75(C), pages 598-606.
    5. e Silva, Danilo P. & Félix Salles, José L. & Fardin, Jussara F. & Rocha Pereira, Maxsuel M., 2020. "Management of an island and grid-connected microgrid using hybrid economic model predictive control with weather data," Applied Energy, Elsevier, vol. 278(C).
    6. Nemati, Mohsen & Braun, Martin & Tenbohlen, Stefan, 2018. "Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming," Applied Energy, Elsevier, vol. 210(C), pages 944-963.
    7. Elnaz Davoodi & Salar Balaei-Sani & Behnam Mohammadi-Ivatloo & Mehdi Abapour, 2021. "Flexible Continuous-Time Modeling for Multi-Objective Day-Ahead Scheduling of CHP Units," Sustainability, MDPI, vol. 13(9), pages 1-18, April.
    8. Mallol-Poyato, R. & Salcedo-Sanz, S. & Jiménez-Fernández, S. & Díaz-Villar, P., 2015. "Optimal discharge scheduling of energy storage systems in MicroGrids based on hyper-heuristics," Renewable Energy, Elsevier, vol. 83(C), pages 13-24.
    9. Tiago Soares & Marco Silva & Tiago Sousa & Hugo Morais & Zita Vale, 2017. "Energy and Reserve under Distributed Energy Resources Management—Day-Ahead, Hour-Ahead and Real-Time," Energies, MDPI, vol. 10(11), pages 1-18, November.
    10. Alipour, Manijeh & Zare, Kazem & Seyedi, Heresh & Jalali, Mehdi, 2019. "Real-time price-based demand response model for combined heat and power systems," Energy, Elsevier, vol. 168(C), pages 1119-1127.
    11. Zhang, Yan & Meng, Fanlin & Wang, Rui & Kazemtabrizi, Behzad & Shi, Jianmai, 2019. "Uncertainty-resistant stochastic MPC approach for optimal operation of CHP microgrid," Energy, Elsevier, vol. 179(C), pages 1265-1278.
    12. Keifa Vamba Konneh & Hasan Masrur & Mohammad Lutfi Othman & Hiroshi Takahashi & Narayanan Krishna & Tomonobu Senjyu, 2021. "Multi-Attribute Decision-Making Approach for a Cost-Effective and Sustainable Energy System Considering Weight Assignment Analysis," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    13. Wang, Yuwei & Tang, Liu & Yang, Yuanjuan & Sun, Wei & Zhao, Huiru, 2020. "A stochastic-robust coordinated optimization model for CCHP micro-grid considering multi-energy operation and power trading with electricity markets under uncertainties," Energy, Elsevier, vol. 198(C).
    14. Carlos Adrian Correa-Florez & Andrea Michiorri & Georges Kariniotakis, 2019. "Comparative Analysis of Adjustable Robust Optimization Alternatives for the Participation of Aggregated Residential Prosumers in Electricity Markets," Energies, MDPI, vol. 12(6), pages 1-27, March.
    15. Howell, Shaun & Rezgui, Yacine & Hippolyte, Jean-Laurent & Jayan, Bejay & Li, Haijiang, 2017. "Towards the next generation of smart grids: Semantic and holonic multi-agent management of distributed energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 193-214.
    16. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    17. Gazijahani, Farhad Samadi & Salehi, Javad, 2018. "Reliability constrained two-stage optimization of multiple renewable-based microgrids incorporating critical energy peak pricing demand response program using robust optimization approach," Energy, Elsevier, vol. 161(C), pages 999-1015.
    18. Kia, Mohsen & Setayesh Nazar, Mehrdad & Sepasian, Mohammad Sadegh & Heidari, Alireza & Siano, Pierluigi, 2017. "An efficient linear model for optimal day ahead scheduling of CHP units in active distribution networks considering load commitment programs," Energy, Elsevier, vol. 139(C), pages 798-817.
    19. Kia, Mohsen & Nazar, Mehrdad Setayesh & Sepasian, Mohammad Sadegh & Heidari, Alireza & Siano, Pierluigi, 2017. "Optimal day ahead scheduling of combined heat and power units with electrical and thermal storage considering security constraint of power system," Energy, Elsevier, vol. 120(C), pages 241-252.
    20. Sandelic, Monika & Peyghami, Saeed & Sangwongwanich, Ariya & Blaabjerg, Frede, 2022. "Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:208:y:2020:i:c:s0360544220315255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.