IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v202y2020ics0360544220308574.html
   My bibliography  Save this article

A new flat-plate radiative cooling and solar collector numerical model: Evaluation and metamodeling

Author

Listed:
  • Vall, Sergi
  • Johannes, Kévyn
  • David, Damien
  • Castell, Albert

Abstract

Radiative cooling is a renewable technology that can complement or partially replace current cooling technologies. Coupling radiative cooling with another technology, such as solar collection could foster its development and implementation in the market. Therefore, a numerical model capable to simulate the behavior of a coupled radiative cooling and solar collection system is developed and presented in this paper. The model is validated with experimental data for both solar collection and radiative cooling operation, and a sensitivity analysis is performed in order to determine the most influencing parameters. Results show the potential of the device to perform the double functionality: solar thermal collector and radiative cooler. As expected the heating power (17.11kWh/m2) is one order of magnitude higher than the cooling one (2.82kWh/m2). The sensitivity analysis determined the existence of an important role played by 5 parameters (air gap thermal conductivity, absorptivity/emissivity of the radiator at 7–14 μm wavelength range, transmissivity of the cover material 2 at 7–14 μm wavelength range, water inlet temperature, and water inlet flow) and 4 combinations of these parameters in the radiative cooling mode.

Suggested Citation

  • Vall, Sergi & Johannes, Kévyn & David, Damien & Castell, Albert, 2020. "A new flat-plate radiative cooling and solar collector numerical model: Evaluation and metamodeling," Energy, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220308574
    DOI: 10.1016/j.energy.2020.117750
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220308574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117750?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vall, Sergi & Castell, Albert, 2017. "Radiative cooling as low-grade energy source: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 803-820.
    2. Bagiorgas, H.S. & Mihalakakou, G., 2008. "Experimental and theoretical investigation of a nocturnal radiator for space cooling," Renewable Energy, Elsevier, vol. 33(6), pages 1220-1227.
    3. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar cold production through absorption technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5331-5348.
    4. Jeong, Shin Young & Tso, Chi Yan & Ha, Jimyeong & Wong, Yuk Ming & Chao, Christopher Y.H. & Huang, Baoling & Qiu, Huihe, 2020. "Field investigation of a photonic multi-layered TiO2 passive radiative cooler in sub-tropical climate," Renewable Energy, Elsevier, vol. 146(C), pages 44-55.
    5. Aaswath P. Raman & Marc Abou Anoma & Linxiao Zhu & Eden Rephaeli & Shanhui Fan, 2014. "Passive radiative cooling below ambient air temperature under direct sunlight," Nature, Nature, vol. 515(7528), pages 540-544, November.
    6. Zhao, Bin & Hu, Mingke & Ao, Xianze & Pei, Gang, 2017. "Conceptual development of a building-integrated photovoltaic–radiative cooling system and preliminary performance analysis in Eastern China," Applied Energy, Elsevier, vol. 205(C), pages 626-634.
    7. Hughes, Ben Richard & Chaudhry, Hassam Nasarullah & Ghani, Saud Abdul, 2011. "A review of sustainable cooling technologies in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3112-3120, August.
    8. Ji, Jie & Lu, Jian-Ping & Chow, Tin-Tai & He, Wei & Pei, Gang, 2007. "A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation," Applied Energy, Elsevier, vol. 84(2), pages 222-237, February.
    9. Zhao, Bin & Hu, Mingke & Ao, Xianze & Huang, Xiaona & Ren, Xiao & Pei, Gang, 2019. "Conventional photovoltaic panel for nocturnal radiative cooling and preliminary performance analysis," Energy, Elsevier, vol. 175(C), pages 677-686.
    10. Ahn, Hyeunguk & Rim, Donghyun & Freihaut, James D., 2018. "Performance assessment of hybrid chiller systems for combined cooling, heating and power production," Applied Energy, Elsevier, vol. 225(C), pages 501-512.
    11. Hu, Mingke & Zhao, Bin & Ao, Xianze & Su, Yuehong & Wang, Yunyun & Pei, Gang, 2018. "Comparative analysis of different surfaces for integrated solar heating and radiative cooling: A numerical study," Energy, Elsevier, vol. 155(C), pages 360-369.
    12. Yin, Juan & Shi, Lin & Zhu, Ming-Shan & Han, Li-Zhong, 2000. "Performance analysis of an absorption heat transformer with different working fluid combinations," Applied Energy, Elsevier, vol. 67(3), pages 281-292, November.
    13. Zevenhoven, Ron & Fält, Martin, 2018. "Radiative cooling through the atmospheric window: A third, less intrusive geoengineering approach," Energy, Elsevier, vol. 152(C), pages 27-33.
    14. Michell, D. & Biggs, K.L., 1979. "Radiation cooling of buildings at night," Applied Energy, Elsevier, vol. 5(4), pages 263-275, October.
    15. Hu, Mingke & Zhao, Bin & Li, Jing & Wang, Yunyun & Pei, Gang, 2017. "Preliminary thermal analysis of a combined photovoltaic–photothermic–nocturnal radiative cooling system," Energy, Elsevier, vol. 137(C), pages 419-430.
    16. Zhang, Kai & Zhao, Dongliang & Yin, Xiaobo & Yang, Ronggui & Tan, Gang, 2018. "Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA," Applied Energy, Elsevier, vol. 224(C), pages 371-381.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su, Xiaosong & Zhang, Ling & Liu, Zhongbing & Luo, Yongqiang & Chen, Dapeng & Li, Weijiao, 2021. "Performance evaluation of a novel building envelope integrated with thermoelectric cooler and radiative sky cooler," Renewable Energy, Elsevier, vol. 171(C), pages 1061-1078.
    2. Vilà, Roger & Medrano, Marc & Castell, Albert, 2023. "Numerical analysis of the combination of radiative collectors and emitters to improve the performance of water-water compression heat pumps under different climates," Energy, Elsevier, vol. 266(C).
    3. Alimohammadian, Mehdi & Dinarvand, Saeed & Mahian, Omid, 2022. "Innovative strategy of passive sub-ambient radiative cooler through incorporation of a thermal rectifier to double-layer nanoparticle-based coating," Energy, Elsevier, vol. 247(C).
    4. Hu, Tianxiang & Kwan, Trevor Hocksun & Pei, Gang, 2022. "An all-day cooling system that combines solar absorption chiller and radiative cooling," Renewable Energy, Elsevier, vol. 186(C), pages 831-844.
    5. Hu, Mingke & Zhao, Bin & Suhendri, & Ao, Xianze & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2022. "Applications of radiative sky cooling in solar energy systems: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Pei, Gang, 2019. "Radiative cooling: A review of fundamentals, materials, applications, and prospects," Applied Energy, Elsevier, vol. 236(C), pages 489-513.
    2. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Su, Yuehong & Pei, Gang, 2019. "A novel strategy for a building-integrated diurnal photovoltaic and all-day radiative cooling system," Energy, Elsevier, vol. 183(C), pages 892-900.
    3. Hu, Mingke & Zhao, Bin & Ao, Xianze & Feng, Junsheng & Cao, Jingyu & Su, Yuehong & Pei, Gang, 2019. "Experimental study on a hybrid photo-thermal and radiative cooling collector using black acrylic paint as the panel coating," Renewable Energy, Elsevier, vol. 139(C), pages 1217-1226.
    4. Hu, Mingke & Zhao, Bin & Ao, Xianze & Zhao, Pinghui & Su, Yuehong & Pei, Gang, 2018. "Field investigation of a hybrid photovoltaic-photothermic-radiative cooling system," Applied Energy, Elsevier, vol. 231(C), pages 288-300.
    5. Pirvaram, Atousa & Talebzadeh, Nima & Leung, Siu Ning & O'Brien, Paul G., 2022. "Radiative cooling for buildings: A review of techno-enviro-economics and life-cycle assessment methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Marco Noro & Simone Mancin & Roger Riehl, 2021. "Energy and Economic Sustainability of a Trigeneration Solar System Using Radiative Cooling in Mediterranean Climate," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    7. Zhao, Bin & Hu, Mingke & Ao, Xianze & Huang, Xiaona & Ren, Xiao & Pei, Gang, 2019. "Conventional photovoltaic panel for nocturnal radiative cooling and preliminary performance analysis," Energy, Elsevier, vol. 175(C), pages 677-686.
    8. Hu, Mingke & Zhao, Bin & Suhendri, & Ao, Xianze & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2022. "Applications of radiative sky cooling in solar energy systems: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    9. Hu, Mingke & Zhao, Bin & Ao, Xianze & Su, Yuehong & Pei, Gang, 2018. "Parametric analysis and annual performance evaluation of an air-based integrated solar heating and radiative cooling collector," Energy, Elsevier, vol. 165(PA), pages 811-824.
    10. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Jiao, Dongsheng & Pei, Gang, 2019. "Performance analysis of a hybrid system combining photovoltaic and nighttime radiative cooling," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    11. Sergi Vall & Marc Medrano & Cristian Solé & Albert Castell, 2020. "Combined Radiative Cooling and Solar Thermal Collection: Experimental Proof of Concept," Energies, MDPI, vol. 13(4), pages 1-13, February.
    12. Farooq, Abdul Samad & Zhang, Peng & Gao, Yongfeng & Gulfam, Raza, 2021. "Emerging radiative materials and prospective applications of radiative sky cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    13. Gopalakrishna Gangisetty & Ron Zevenhoven, 2023. "A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights," Energies, MDPI, vol. 16(4), pages 1-59, February.
    14. Lu, Xing & Xu, Peng & Wang, Huilong & Yang, Tao & Hou, Jin, 2016. "Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1079-1097.
    15. Lv, Song & Ji, Yishuang & Ji, Yitong & Qian, Zuoqin & Ren, Juwen & Zhang, Bolong & Lai, Yin & Yang, Jiahao & Chang, Zhihao, 2022. "Experimental and numerical comparative investigation on 24h radiative cooling performance of a simple organic composite film," Energy, Elsevier, vol. 261(PA).
    16. Su, Xiaosong & Zhang, Ling & Liu, Zhongbing & Luo, Yongqiang & Chen, Dapeng & Li, Weijiao, 2021. "Performance evaluation of a novel building envelope integrated with thermoelectric cooler and radiative sky cooler," Renewable Energy, Elsevier, vol. 171(C), pages 1061-1078.
    17. Lv, Song & Ji, Yishuang & Qian, Zuoqin & He, Wei & Hu, Zhongting & Liu, Minghou, 2021. "A novel strategy of enhancing sky radiative cooling by solar photovoltaic-thermoelectric cooler," Energy, Elsevier, vol. 219(C).
    18. She, Xiaohui & Cong, Lin & Nie, Binjian & Leng, Guanghui & Peng, Hao & Chen, Yi & Zhang, Xiaosong & Wen, Tao & Yang, Hongxing & Luo, Yimo, 2018. "Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review," Applied Energy, Elsevier, vol. 232(C), pages 157-186.
    19. Hu, Mingke & Zhao, Bin & Ao, Xianze & Ren, Xiao & Cao, Jingyu & Wang, Qiliang & Su, Yuehong & Pei, Gang, 2020. "Performance assessment of a trifunctional system integrating solar PV, solar thermal, and radiative sky cooling," Applied Energy, Elsevier, vol. 260(C).
    20. Wang, Cun-Hai & Chen, Hao & Jiang, Ze-Yi & Zhang, Xin-Xin & Wang, Fu-Qiang, 2023. "Modelling and performance evaluation of a novel passive thermoelectric system based on radiative cooling and solar heating for 24-hour power-generation," Applied Energy, Elsevier, vol. 331(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220308574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.