IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v5y1979i4p263-275.html
   My bibliography  Save this article

Radiation cooling of buildings at night

Author

Listed:
  • Michell, D.
  • Biggs, K.L.

Abstract

The cooling of small buildings at night by radiation loss to the sky has been investigated by monitoring the thermal performance of two huts: one roofed with galvanised steel decking painted white, which acts as a [`]black body' for wavelengths greater than 3 [mu]m; the other with aluminium decking to which aluminised [`]Tedlar' sheet had been glued, the [`]Tedlar' acting as a selective surface absorbing and radiating mainly in the 8-13 [mu]m band. The hut with the painted roof was cooled marginally better than that with the [`]Tedlar' covered roof. Useful cooling powers of 22 Wm-2 were achieved at a roof temperature of 5°C, ambient 10°C, and the gross cooling power probably exceeded 29 Wm-2. Calculations based on a simple simulation of the sky radiation yield an upper limit of 40 Wm-2 for the cooling power of the surfaces and suggest that an ideally selective surface operating under the best possible clear-sky conditions has little advantage over a black body radiator unless the temperature of the surfaces is significantly lower than the ambient air temperature.

Suggested Citation

  • Michell, D. & Biggs, K.L., 1979. "Radiation cooling of buildings at night," Applied Energy, Elsevier, vol. 5(4), pages 263-275, October.
  • Handle: RePEc:eee:appene:v:5:y:1979:i:4:p:263-275
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0306-2619(79)90017-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming, Tingzhen & de_Richter, Renaud & Liu, Wei & Caillol, Sylvain, 2014. "Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 792-834.
    2. Chen, Siru & Lin, Kaixin & Pan, Aiqiang & Ho, Tsz Chung & Zhu, Yihao & Tso, Chi Yan, 2023. "Study of a passive radiative cooling coating on chemical storage tanks for evaporative loss control," Renewable Energy, Elsevier, vol. 211(C), pages 326-335.
    3. Golaka, Auttapol & Exell, R.H.B., 2007. "An investigation into the use of a wind shield to reduce the convective heat flux to a nocturnal radiative cooling surface," Renewable Energy, Elsevier, vol. 32(4), pages 593-608.
    4. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Jiao, Dongsheng & Pei, Gang, 2019. "Performance analysis of a hybrid system combining photovoltaic and nighttime radiative cooling," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. Vall, Sergi & Johannes, Kévyn & David, Damien & Castell, Albert, 2020. "A new flat-plate radiative cooling and solar collector numerical model: Evaluation and metamodeling," Energy, Elsevier, vol. 202(C).
    6. Tso, C.Y. & Chan, K.C. & Chao, Christopher Y.H., 2017. "A field investigation of passive radiative cooling under Hong Kong’s climate," Renewable Energy, Elsevier, vol. 106(C), pages 52-61.
    7. Vall, Sergi & Castell, Albert, 2017. "Radiative cooling as low-grade energy source: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 803-820.
    8. Lu, Xing & Xu, Peng & Wang, Huilong & Yang, Tao & Hou, Jin, 2016. "Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1079-1097.
    9. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Pei, Gang, 2019. "Radiative cooling: A review of fundamentals, materials, applications, and prospects," Applied Energy, Elsevier, vol. 236(C), pages 489-513.
    10. Zhang, Kai & Zhao, Dongliang & Yin, Xiaobo & Yang, Ronggui & Tan, Gang, 2018. "Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA," Applied Energy, Elsevier, vol. 224(C), pages 371-381.
    11. Amir, A. & van Hout, R., 2019. "A transient model for optimizing a hybrid nocturnal sky radiation cooling system," Renewable Energy, Elsevier, vol. 132(C), pages 370-380.
    12. Katramiz, Elvire & Al Jebaei, Hussein & Alotaibi, Sorour & Chakroun, Walid & Ghaddar, Nesreen & Ghali, Kamel, 2020. "Sustainable cooling system for Kuwait hot climate combining diurnal radiative cooling and indirect evaporative cooling system," Energy, Elsevier, vol. 213(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:5:y:1979:i:4:p:263-275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.