IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v200y2020ics0360544220306344.html
   My bibliography  Save this article

New method for determining the optimum fluid temperature when heating pressure thick-walled components with openings

Author

Listed:
  • Taler, Dawid
  • Dzierwa, Piotr
  • Taler, Jan

Abstract

A new approximate method of optimum heating cylindrical pressure elements weakened by openings was proposed. Optimum variations in fluid temperature when heating the pressure component were determined from the condition that the total circumferential stress at the edge of the opening, resulting from the thermal load and pressure is equal to the allowable stress. The allowable stress is determined from the Wöhler fatigue diagram for a given number of start-ups and shutdowns of a power unit from the cold state. Optimum temperature changes are difficult to estimate at the beginning of the heating, using both exact analytical and numerical methods. In case of analytical methods, this is due to the very slow convergence of a series for near-zero time in the exact solution. In this paper, the optimum temperature changes of the fluid at the beginning of heating were determined using the heat balance integral method (HBIM). This method makes it possible to determine with high accuracy the temperature of the fluid for times close to zero, i.e., at the beginning of the heating process. In the second stage of heating, the optimum fluid temperature was determined on the assumption of a quasi-steady temperature field in the pressure element. The problem analysed in the article is important to increase flexibility of boilers and steam units. By optimising the heating up of the boiler during boiler start-up, the start-up time of the boiler and the whole unit can be significantly shortened and the power unit can be quickly connected to the power system.

Suggested Citation

  • Taler, Dawid & Dzierwa, Piotr & Taler, Jan, 2020. "New method for determining the optimum fluid temperature when heating pressure thick-walled components with openings," Energy, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:energy:v:200:y:2020:i:c:s0360544220306344
    DOI: 10.1016/j.energy.2020.117527
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220306344
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117527?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bollati, J. & Semitiel, J. & Tarzia, D.A., 2018. "Heat balance integral methods applied to the one-phase Stefan problem with a convective boundary condition at the fixed face," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 1-19.
    2. Sunil, P.U. & Barve, Jayesh & Nataraj, P.S.V., 2017. "Mathematical modeling, simulation and validation of a boiler drum: Some investigations," Energy, Elsevier, vol. 126(C), pages 312-325.
    3. Jaremkiewicz, Magdalena & Dzierwa, Piotr & Taler, Dawid & Taler, Jan, 2019. "Monitoring of transient thermal stresses in pressure components of steam boilers using an innovative technique for measuring the fluid temperature," Energy, Elsevier, vol. 175(C), pages 139-150.
    4. Ribera, H. & Myers, T.G. & MacDevette, M.M., 2019. "Optimising the heat balance integral method in spherical and cylindrical Stefan problems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 216-231.
    5. Taler, Jan & Dzierwa, Piotr & Taler, Dawid & Harchut, Piotr, 2015. "Optimization of the boiler start-up taking into account thermal stresses," Energy, Elsevier, vol. 92(P1), pages 160-170.
    6. Taler, Jan & Dzierwa, Piotr & Jaremkiewicz, Magdalena & Taler, Dawid & Kaczmarski, Karol & Trojan, Marcin & Sobota, Tomasz, 2019. "Thermal stress monitoring in thick walled pressure components of steam boilers," Energy, Elsevier, vol. 175(C), pages 645-666.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taler, Dawid & Dzierwa, Piotr & Kaczmarski, Karol & Taler, Jan, 2021. "Optimisation of heating and cooling of pressure thick-walled components operating in the saturated steam area," Energy, Elsevier, vol. 231(C).
    2. Taler, Dawid & Dzierwa, Piotr & Kaczmarski, Karol & Taler, Jan, 2022. "Increase the flexibility of steam boilers by optimisation of critical pressure component heating," Energy, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grądziel, Sławomir, 2019. "Analysis of thermal and flow phenomena in natural circulation boiler evaporator," Energy, Elsevier, vol. 172(C), pages 881-891.
    2. Taler, Jan & Trojan, Marcin & Dzierwa, Piotr & Kaczmarski, Karol & Węglowski, Bohdan & Taler, Dawid & Zima, Wiesław & Grądziel, Sławomir & Ocłoń, Paweł & Sobota, Tomasz & Rerak, Monika & Jaremkiewicz,, 2023. "The flexible boiler operation in a wide range of load changes with considering the strength and environmental restrictions," Energy, Elsevier, vol. 263(PB).
    3. Taler, Dawid & Dzierwa, Piotr & Kaczmarski, Karol & Taler, Jan, 2022. "Increase the flexibility of steam boilers by optimisation of critical pressure component heating," Energy, Elsevier, vol. 250(C).
    4. Xu, Minghan & Akhtar, Saad & Zueter, Ahmad F. & Alzoubi, Mahmoud A. & Sushama, Laxmi & Sasmito, Agus P., 2021. "Asymptotic analysis of a two-phase Stefan problem in annulus: Application to outward solidification in phase change materials," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    5. Andrzej Rusin & Martyna Tomala & Henryk Łukowicz & Grzegorz Nowak & Wojciech Kosman, 2021. "On-Line Control of Stresses in the Power Unit Pressure Elements Taking Account of Variable Heat Transfer Conditions," Energies, MDPI, vol. 14(15), pages 1-21, August.
    6. Konstantin Osintsev & Sergei Aliukov & Yuri Prikhodko, 2021. "Management of the Torch Structure with the New Methodological Approaches to Regulation Based on Neural Network Algorithms," Energies, MDPI, vol. 14(7), pages 1-17, March.
    7. Taler, Jan & Zima, Wiesław & Ocłoń, Paweł & Grądziel, Sławomir & Taler, Dawid & Cebula, Artur & Jaremkiewicz, Magdalena & Korzeń, Anna & Cisek, Piotr & Kaczmarski, Karol & Majewski, Karol, 2019. "Mathematical model of a supercritical power boiler for simulating rapid changes in boiler thermal loading," Energy, Elsevier, vol. 175(C), pages 580-592.
    8. Zima, Wiesław & Grądziel, Sławomir & Cebula, Artur & Rerak, Monika & Kozak-Jagieła, Ewa & Pilarczyk, Marcin, 2023. "Mathematical model of a power boiler operation under rapid thermal load changes," Energy, Elsevier, vol. 263(PC).
    9. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
    10. Jiří Jaromír Klemeš & Petar Sabev Varbanov & Paweł Ocłoń & Hon Huin Chin, 2019. "Towards Efficient and Clean Process Integration: Utilisation of Renewable Resources and Energy-Saving Technologies," Energies, MDPI, vol. 12(21), pages 1-32, October.
    11. Majdak, Marek & Grądziel, Sławomir, 2020. "Influence of thermal and flow conditions on the thermal stresses distribution in the evaporator tubes," Energy, Elsevier, vol. 209(C).
    12. Romero-Anton, N. & Martin-Escudero, K. & Portillo-Valdés, L.A. & Gómez-Elvira, I. & Salazar-Herran, E., 2018. "Improvement of auxiliary BI-DRUM boiler operation by dynamic simulation," Energy, Elsevier, vol. 148(C), pages 676-686.
    13. Ducardo L. Molina & Juan Ricardo Vidal Medina & Alexis Sagastume Gutiérrez & Juan J. Cabello Eras & Jesús A. Lopez & Simón Hincapie & Enrique C. Quispe, 2023. "Multiobjective Optimization of the Energy Efficiency and the Steam Flow in a Bagasse Boiler," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    14. Erik Rosado-Tamariz & Miguel A. Zuniga-Garcia & Alfonso Campos-Amezcua & Rafael Batres, 2020. "A Framework for the Synthesis of Optimum Operating Profiles Based on Dynamic Simulation and a Micro Genetic Algorithm," Energies, MDPI, vol. 13(3), pages 1-23, February.
    15. Konstantin Osintsev & Sergei Aliukov & Sulpan Kuskarbekova, 2021. "Experimental Study of a Coil Type Steam Boiler Operated on an Oil Field in the Subarctic Continental Climate," Energies, MDPI, vol. 14(4), pages 1-23, February.
    16. Chandrasekharan, Sreepradha & Panda, Rames C. & Swaminathan, Bhuvaneswari Natrajan & Panda, Atanu, 2018. "Operational control of an integrated drum boiler of a coal fired thermal power plant," Energy, Elsevier, vol. 159(C), pages 977-987.
    17. Sreepradha, Chandrasekharan & Panda, Rames Chandra & Bhuvaneswari, Natrajan Swaminathan, 2017. "Mathematical model for integrated coal fired thermal boiler using physical laws," Energy, Elsevier, vol. 118(C), pages 985-998.
    18. Sunil, P.U. & Barve, Jayesh & Nataraj, P.S.V., 2018. "A robust heat recovery steam generator drum level control for wide range operation flexibility considering renewable energy integration," Energy, Elsevier, vol. 163(C), pages 873-893.
    19. Neshumayev, Dmitri & Rummel, Leo & Konist, Alar & Ots, Arvo & Parve, Teet, 2018. "Power plant fuel consumption rate during load cycling," Applied Energy, Elsevier, vol. 224(C), pages 124-135.
    20. Jia, Xiongjie & Sang, Yichen & Li, Yanjun & Du, Wei & Zhang, Guolei, 2022. "Short-term forecasting for supercharged boiler safety performance based on advanced data-driven modelling framework," Energy, Elsevier, vol. 239(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:200:y:2020:i:c:s0360544220306344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.