IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v331y2018icp1-19.html
   My bibliography  Save this article

Heat balance integral methods applied to the one-phase Stefan problem with a convective boundary condition at the fixed face

Author

Listed:
  • Bollati, J.
  • Semitiel, J.
  • Tarzia, D.A.

Abstract

In this paper we consider a one-dimensional one-phase Stefan problem corresponding to the solidification process of a semi-infinite material with a convective boundary condition at the fixed face. The exact solution of this problem, available recently in the literature, enable us to test the accuracy of the approximate solutions obtained by applying the classical technique of the heat balance integral method and the refined integral method, assuming a quadratic temperature profile in space. We develop variations of these methods which turn out to be optimal in some cases. Throughout this paper, a dimensionless analysis is carried out by using the parameters: Stefan number (Ste) and the generalized Biot number (Bi). In addition it is studied the case when Bi goes to infinity, recovering the approximate solutions when a Dirichlet condition is imposed at the fixed face. Some numerical simulations are provided in order to estimate the errors committed by each approach for the corresponding free boundary and temperature profiles.

Suggested Citation

  • Bollati, J. & Semitiel, J. & Tarzia, D.A., 2018. "Heat balance integral methods applied to the one-phase Stefan problem with a convective boundary condition at the fixed face," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 1-19.
  • Handle: RePEc:eee:apmaco:v:331:y:2018:i:c:p:1-19
    DOI: 10.1016/j.amc.2018.02.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318301644
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.02.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Minghan & Akhtar, Saad & Zueter, Ahmad F. & Alzoubi, Mahmoud A. & Sushama, Laxmi & Sasmito, Agus P., 2021. "Asymptotic analysis of a two-phase Stefan problem in annulus: Application to outward solidification in phase change materials," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    2. Taler, Dawid & Dzierwa, Piotr & Taler, Jan, 2020. "New method for determining the optimum fluid temperature when heating pressure thick-walled components with openings," Energy, Elsevier, vol. 200(C).
    3. Singh, Jitendra & Jitendra, & Rai, Kabindra Nath, 2020. "Legendre wavelet based numerical solution of variable latent heat moving boundary problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 485-500.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:331:y:2018:i:c:p:1-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.