IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v194y2020ics036054422030030x.html
   My bibliography  Save this article

Providing frequency control reserve with photovoltaic battery energy storage systems and power-to-heat coupling

Author

Listed:
  • Angenendt, Georg
  • Zurmühlen, Sebastian
  • Figgener, Jan
  • Kairies, Kai-Philipp
  • Sauer, Dirk Uwe

Abstract

The number of households with photovoltaic battery storage systems is steadily growing, and so is the number of heat pump installations. An integrated home combines domestic battery systems and a heat pump for power-to-heat coupling. During winter, storage systems in an integrated home are not used to their full capacity due to low solar radiation. This potential can be used to enhance the economics by applying a dual-use scheme. In this publication, an integrated home that participates in the frequency control reserve market is investigated.

Suggested Citation

  • Angenendt, Georg & Zurmühlen, Sebastian & Figgener, Jan & Kairies, Kai-Philipp & Sauer, Dirk Uwe, 2020. "Providing frequency control reserve with photovoltaic battery energy storage systems and power-to-heat coupling," Energy, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:energy:v:194:y:2020:i:c:s036054422030030x
    DOI: 10.1016/j.energy.2020.116923
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422030030X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.116923?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angenendt, Georg & Merten, Michael & Zurmühlen, Sebastian & Sauer, Dirk Uwe, 2020. "Evaluation of the effects of frequency restoration reserves market participation with photovoltaic battery energy storage systems and power-to-heat coupling," Applied Energy, Elsevier, vol. 260(C).
    2. Litjens, G.B.M.A. & Worrell, E. & van Sark, W.G.J.H.M., 2018. "Economic benefits of combining self-consumption enhancement with frequency restoration reserves provision by photovoltaic-battery systems," Applied Energy, Elsevier, vol. 223(C), pages 172-187.
    3. Angenendt, Georg & Zurmühlen, Sebastian & Axelsen, Hendrik & Sauer, Dirk Uwe, 2018. "Comparison of different operation strategies for PV battery home storage systems including forecast-based operation strategies," Applied Energy, Elsevier, vol. 229(C), pages 884-899.
    4. de Oliveira e Silva, Guilherme & Hendrick, Patrick, 2017. "Photovoltaic self-sufficiency of Belgian households using lithium-ion batteries, and its impact on the grid," Applied Energy, Elsevier, vol. 195(C), pages 786-799.
    5. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    6. Melo, S.P. & Brand, U. & Vogt, T. & Telle, J.S. & Schuldt, F. & Maydell, K.v., 2019. "Primary frequency control provided by hybrid battery storage and power-to-heat system," Applied Energy, Elsevier, vol. 233, pages 220-231.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Wenyi & Wei, Wei & Chen, Laijun & Zheng, Boshen & Mei, Shengwei, 2020. "Service pricing and load dispatch of residential shared energy storage unit," Energy, Elsevier, vol. 202(C).
    2. Wang, Fei & Lu, Xiaoxing & Mei, Shengwei & Su, Ying & Zhen, Zhao & Zou, Zubing & Zhang, Xuemin & Yin, Rui & Duić, Neven & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "A satellite image data based ultra-short-term solar PV power forecasting method considering cloud information from neighboring plant," Energy, Elsevier, vol. 238(PC).
    3. de Oliveira-Assis, Lais & Soares-Ramos, Emanuel P.P. & Sarrias-Mena, Raúl & García-Triviño, Pablo & González-Rivera, Enrique & Sánchez-Sainz, Higinio & Llorens-Iborra, Francisco & Fernández-Ramírez, L, 2022. "Simplified model of battery energy-stored quasi-Z-source inverter-based photovoltaic power plant with Twofold energy management system," Energy, Elsevier, vol. 244(PA).
    4. Kim, Ju-Hee & Kim, Hee-Hoon & Yoo, Seung-Hoon, 2022. "Social acceptance toward constructing a combined heat and power plant near people's dwellings in South Korea," Energy, Elsevier, vol. 244(PB).
    5. Kevin Jacqué & Lucas Koltermann & Jan Figgener & Sebastian Zurmühlen & Dirk Uwe Sauer, 2022. "The Influence of Frequency Containment Reserve on the Operational Data and the State of Health of the Hybrid Stationary Large-Scale Storage System," Energies, MDPI, vol. 15(4), pages 1-18, February.
    6. Wen, Kerui & Li, Weidong & Yu, Samson Shenglong & Li, Ping & Shi, Peng, 2022. "Optimal intra-day operations of behind-the-meter battery storage for primary frequency regulation provision: A hybrid lookahead method," Energy, Elsevier, vol. 247(C).
    7. Coppitters, Diederik & De Paepe, Ward & Contino, Francesco, 2021. "Robust design optimization of a photovoltaic-battery-heat pump system with thermal storage under aleatory and epistemic uncertainty," Energy, Elsevier, vol. 229(C).
    8. Kim, Ju-Hee & Lim, Seul-Ye & Yoo, Seung-Hoon, 2021. "Public preferences for introducing a power-to-heat system in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Tepe, Benedikt & Figgener, Jan & Englberger, Stefan & Sauer, Dirk Uwe & Jossen, Andreas & Hesse, Holger, 2022. "Optimal pool composition of commercial electric vehicles in V2G fleet operation of various electricity markets," Applied Energy, Elsevier, vol. 308(C).
    10. Fett, Daniel & Fraunholz, Christoph & Lange, Malin, 2023. "Provision of frequency containment reserve from residential battery storage systems: A German case study," Working Paper Series in Production and Energy 71, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    11. Tan, Jin & Wu, Qiuwei & Zhang, Menglin & Wei, Wei & Liu, Feng & Pan, Bo, 2021. "Chance-constrained energy and multi-type reserves scheduling exploiting flexibility from combined power and heat units and heat pumps," Energy, Elsevier, vol. 233(C).
    12. Behzadi, Amirmohammad & Arabkoohsar, Ahmad, 2020. "Feasibility study of a smart building energy system comprising solar PV/T panels and a heat storage unit," Energy, Elsevier, vol. 210(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lopez, A. & Ogayar, B. & Hernández, J.C. & Sutil, F.S., 2020. "Survey and assessment of technical and economic features for the provision of frequency control services by household-prosumers," Energy Policy, Elsevier, vol. 146(C).
    2. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    3. Han, Xuejiao & Garrison, Jared & Hug, Gabriela, 2022. "Techno-economic analysis of PV-battery systems in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Hernández, J.C. & Sanchez-Sutil, F. & Muñoz-Rodríguez, F.J. & Baier, C.R., 2020. "Optimal sizing and management strategy for PV household-prosumers with self-consumption/sufficiency enhancement and provision of frequency containment reserve," Applied Energy, Elsevier, vol. 277(C).
    5. Parra, David & Patel, Martin K., 2019. "The nature of combining energy storage applications for residential battery technology," Applied Energy, Elsevier, vol. 239(C), pages 1343-1355.
    6. Fabian Rücker & Michael Merten & Jingyu Gong & Roberto Villafáfila-Robles & Ilka Schoeneberger & Dirk Uwe Sauer, 2020. "Evaluation of the Effects of Smart Charging Strategies and Frequency Restoration Reserves Market Participation of an Electric Vehicle," Energies, MDPI, vol. 13(12), pages 1-31, June.
    7. Gomez-Gonzalez, M. & Hernandez, J.C. & Vera, D. & Jurado, F., 2020. "Optimal sizing and power schedule in PV household-prosumers for improving PV self-consumption and providing frequency containment reserve," Energy, Elsevier, vol. 191(C).
    8. Sofiane Kichou & Nikolaos Skandalos & Petr Wolf, 2020. "Evaluation of Photovoltaic and Battery Storage Effects on the Load Matching Indicators Based on Real Monitored Data," Energies, MDPI, vol. 13(11), pages 1-20, May.
    9. Angenendt, Georg & Zurmühlen, Sebastian & Axelsen, Hendrik & Sauer, Dirk Uwe, 2018. "Comparison of different operation strategies for PV battery home storage systems including forecast-based operation strategies," Applied Energy, Elsevier, vol. 229(C), pages 884-899.
    10. Yazhou Zhao & Xiangxi Qin & Xiangyu Shi, 2022. "A Comprehensive Evaluation Model on Optimal Operational Schedules for Battery Energy Storage System by Maximizing Self-Consumption Strategy and Genetic Algorithm," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
    11. Fernando Echevarría Camarero & Ana Ogando-Martínez & Pablo Durán Gómez & Pablo Carrasco Ortega, 2022. "Profitability of Batteries in Photovoltaic Systems for Small Industrial Consumers in Spain under Current Regulatory Framework and Energy Prices," Energies, MDPI, vol. 16(1), pages 1-19, December.
    12. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    13. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    14. Nordgård-Hansen, Ellen & Kishor, Nand & Midttømme, Kirsti & Risinggård, Vetle Kjær & Kocbach, Jan, 2022. "Case study on optimal design and operation of detached house energy system: Solar, battery, and ground source heat pump," Applied Energy, Elsevier, vol. 308(C).
    15. Reimuth, Andrea & Prasch, Monika & Locherer, Veronika & Danner, Martin & Mauser, Wolfram, 2019. "Influence of different battery charging strategies on residual grid power flows and self-consumption rates at regional scale," Applied Energy, Elsevier, vol. 238(C), pages 572-581.
    16. Roberts, Mike B. & Bruce, Anna & MacGill, Iain, 2019. "Impact of shared battery energy storage systems on photovoltaic self-consumption and electricity bills in apartment buildings," Applied Energy, Elsevier, vol. 245(C), pages 78-95.
    17. Angenendt, Georg & Merten, Michael & Zurmühlen, Sebastian & Sauer, Dirk Uwe, 2020. "Evaluation of the effects of frequency restoration reserves market participation with photovoltaic battery energy storage systems and power-to-heat coupling," Applied Energy, Elsevier, vol. 260(C).
    18. Hong Eun Moon & Yoon Hee Ha & Kyung Nam Kim, 2022. "Comparative Economic Analysis of Solar PV and Reused EV Batteries in the Residential Sector of Three Emerging Countries—The Philippines, Indonesia, and Vietnam," Energies, MDPI, vol. 16(1), pages 1-26, December.
    19. Bai, Bo & Xiong, Siqin & Song, Bo & Xiaoming, Ma, 2019. "Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 213-229.
    20. Zou, Bin & Peng, Jinqing & Li, Sihui & Li, Yi & Yan, Jinyue & Yang, Hongxing, 2022. "Comparative study of the dynamic programming-based and rule-based operation strategies for grid-connected PV-battery systems of office buildings," Applied Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:194:y:2020:i:c:s036054422030030x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.