IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v192y2020ics0360544219323497.html
   My bibliography  Save this article

Fuel consumption at the oversaturated signalized intersection considering queue effects: A case study in Harbin, China

Author

Listed:
  • Wu, Lina
  • Ci, Yusheng
  • Wang, Yunpeng
  • Chen, Peng

Abstract

Vehicles are always in an alternating state of going and stopping at oversaturated signalized intersections, which not only reduces the operational efficiency of the intersections but also greatly increases the average fuel consumption of vehicles. The purpose of this study is to propose a fuel consumption analysis method that can be adapted to the oversaturated signalized intersections. Considering queue effects, this paper proposed a way to define the judging criteria and the classification for the oversaturated state based on the intersection spacing, traffic demand, and the intersection capacity. The theoretical models were constructed for estimating vehicular fuel consumption towards two different oversaturated states and with/without automatic start and stop systems respectively, which was dependent on two main parameters of the delay and the stop that were confirmed by the definite number theory. The results show that the degree of saturation of the approach and the automatic start and stop systems have a great influence on vehicular fuel consumption at oversaturated signalized intersections, and the shorter spacing is expected for the oversaturated state II because of more deceleration and acceleration maneuvers.

Suggested Citation

  • Wu, Lina & Ci, Yusheng & Wang, Yunpeng & Chen, Peng, 2020. "Fuel consumption at the oversaturated signalized intersection considering queue effects: A case study in Harbin, China," Energy, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219323497
    DOI: 10.1016/j.energy.2019.116654
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219323497
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Tie-Qiao & Yi, Zhi-Yan & Lin, Qing-Feng, 2017. "Effects of signal light on the fuel consumption and emissions under car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 200-205.
    2. Qian Zhang & Xunmin Ou & Xiaoyu Yan & Xiliang Zhang, 2017. "Electric Vehicle Market Penetration and Impacts on Energy Consumption and CO 2 Emission in the Future: Beijing Case," Energies, MDPI, vol. 10(2), pages 1-15, February.
    3. Wang, Hailin & Ou, Xunmin & Zhang, Xiliang, 2017. "Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050," Energy Policy, Elsevier, vol. 109(C), pages 719-733.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Jimin & Liu, Lidong & Liang, Xiao & Chen, Shihe & Yuan, Jun, 2021. "Evaluating fuel consumption factor for energy conservation and carbon neutral on an industrial thermal power unit," Energy, Elsevier, vol. 232(C).
    2. Sun, Bin & Zhang, Qijun & Wei, Ning & Jia, Zhenyu & Li, Chunming & Mao, Hongjun, 2022. "The energy flow of moving vehicles for different traffic states in the intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    3. Liu, Ying & Lin, Boqiang & Xu, Bin, 2021. "Modeling the impact of energy abundance on economic growth and CO2 emissions by quantile regression: Evidence from China," Energy, Elsevier, vol. 227(C).
    4. Yongyi Li & Wei Yang & Xiaorui Zhang & Xi Kang & Mengfei Li, 2022. "Research on Automatic Driving Trajectory Planning and Tracking Control Based on Improvement of the Artificial Potential Field Method," Sustainability, MDPI, vol. 14(19), pages 1-28, September.
    5. Cheng-Ju Song & Hong-Fei Jia, 2022. "Car-Following Model Optimization and Simulation Based on Cooperative Adaptive Cruise Control," Sustainability, MDPI, vol. 14(21), pages 1-12, October.
    6. Wang, Xiaoning & Liu, Minzhuang & Ci, Yusheng & Wu, Lina, 2022. "Effect of front two adjacent vehicles’ velocity information on car-following model construction and stability analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Chao & Tan, Jiqiu & Zuo, Hongyan & Wu, Xin & Wang, Shaoli & Liu, Junan, 2021. "Synergy effects analysis on CDPF regeneration performance enhancement and NOx concentration reduction of NH3–SCR over Cu–ZSM–5," Energy, Elsevier, vol. 230(C).
    2. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    3. Tan, Dongli & Meng, Yujun & Tian, Jie & Zhang, Chengtao & Zhang, Zhiqing & Yang, Guanhua & Cui, Shuwan & Hu, Jingyi & Zhao, Ziheng, 2023. "Utilization of renewable and sustainable diesel/methanol/n-butanol (DMB) blends for reducing the engine emissions in a diesel engine with different pre-injection strategies," Energy, Elsevier, vol. 269(C).
    4. Ma, Ying & Yang, Heng & Zuo, Hongyan & Zuo, Qingsong & He, Xiaoxiang & Chen, Wei & Wei, Rongrong, 2023. "EG@Bi-MOF derived porous carbon/lauric acid composite phase change materials for thermal management of batteries," Energy, Elsevier, vol. 272(C).
    5. Hu, Wenyu & E, Jiaqiang & Tan, Yan & Zhang, Feng & Liao, Gaoliang, 2022. "Modified wind energy collection devices for harvesting convective wind energy from cars and trucks moving in the highway," Energy, Elsevier, vol. 247(C).
    6. Zhang, Zhiqing & Li, Jiangtao & Tian, Jie & Dong, Rui & Zou, Zhi & Gao, Sheng & Tan, Dongli, 2022. "Performance, combustion and emission characteristics investigations on a diesel engine fueled with diesel/ ethanol /n-butanol blends," Energy, Elsevier, vol. 249(C).
    7. Ma, Ying & Yang, Heng & Zuo, Hongyan & Ma, Yi & Zuo, Qingsong & Chen, Ying & He, Xiaoxiang & Wei, Rongrong, 2023. "Three-dimensional EG@MOF matrix composite phase change materials for high efficiency battery cooling," Energy, Elsevier, vol. 278(C).
    8. Feng, Changling & Deng, Yuanwang & E, Jiaqiang & Han, Dandan & Tan, Yan, 2023. "Effect analysis on hydrocarbon adsorption enhancement of ZSM-5 zeolite modified by transition metal ions in cold start of gasoline engine," Energy, Elsevier, vol. 267(C).
    9. Tan, Dongli & Wu, Yao & Lv, Junshuai & Li, Jian & Ou, Xiaoyu & Meng, Yujun & Lan, Guanglin & Chen, Yanhui & Zhang, Zhiqing, 2023. "Performance optimization of a diesel engine fueled with hydrogen/biodiesel with water addition based on the response surface methodology," Energy, Elsevier, vol. 263(PC).
    10. Hu, Wenyu & E, Jiaqiang & Zhang, Feng & Chen, Jingwei & Ma, Yinjie & Leng, Erwei, 2022. "Investigation on cooperative mechanism between convective wind energy harvesting and dust collection during vehicle driving on the highway," Energy, Elsevier, vol. 260(C).
    11. Zhang, Zhiqing & Lv, Junshuai & Xie, Guanglin & Wang, Su & Ye, Yanshuai & Huang, Gaohua & Tan, Donlgi, 2022. "Effect of assisted hydrogen on combustion and emission characteristics of a diesel engine fueled with biodiesel," Energy, Elsevier, vol. 254(PA).
    12. E, Jiaqiang & Zhang, Bin & Zeng, Yan & Wen, Ming & Wei, Kexiang & Huang, Zhonghua & Chen, Jingwei & Zhu, Hao & Deng, Yuanwang, 2022. "Effects analysis on active equalization control of lithium-ion batteries based on intelligent estimation of the state-of-charge," Energy, Elsevier, vol. 238(PB).
    13. E, Jiaqiang & Yi, Feng & Li, Wenjie & Zhang, Bin & Zuo, Hongyan & Wei, Kexiang & Chen, Jingwei & Zhu, Hong & Zhu, Hao & Deng, Yuanwang, 2021. "Effect analysis on heat dissipation performance enhancement of a lithium-ion-battery pack with heat pipe for central and southern regions in China," Energy, Elsevier, vol. 226(C).
    14. Yin, Zibin & Cai, Wenwei & Zhang, Zhuo & Deng, Zijin & Li, Zhiyong, 2022. "Effects of hydrogen-rich products from methanol steam reforming on the performance enhancement of a medium-speed marine engine," Energy, Elsevier, vol. 256(C).
    15. E, Shengxin & Cui, Yaxin & Liu, Yuxian & Yin, Huichun, 2023. "Effects of the different phase change materials on heat dissipation performances of the ternary polymer Li-ion battery pack in hot climate," Energy, Elsevier, vol. 282(C).
    16. Hu, Wenyu & E, Jiaqiang & Han, Dandan & Feng, Changling & Luo, Xiaoyu, 2023. "Investigation on distribution characteristics of convective wind energy from vehicle driving on multi-lane highway," Energy, Elsevier, vol. 271(C).
    17. Li, Jiangtao & Zhang, Zhiqing & Ye, Yanshuai & Li, Weiqing & Yuan, Tao & Wang, Haijiao & Li, Yongtao & Tan, Dongli & Zhang, Chengtao, 2022. "Effects of different injection timing on the performance, combustion and emission characteristics of diesel/ethanol/n-butanol blended diesel engine based on multi-objective optimization theory," Energy, Elsevier, vol. 260(C).
    18. Hu, Wenyu & E, Jiaqiang & Leng, Erwei & Zhang, Feng & Chen, Jingwei & Ma, Yinjie, 2023. "Investigation on harvesting characteristics of convective wind energy from vehicle driving on multi-lane highway," Energy, Elsevier, vol. 263(PE).
    19. Zuo, Hongyan & Zhang, Bin & Huang, Zhonghua & Wei, Kexiang & Zhu, Hong & Tan, Jiqiu, 2022. "Effect analysis on SOC values of the power lithium manganate battery during discharging process and its intelligent estimation," Energy, Elsevier, vol. 238(PB).
    20. E, Jiaqiang & Zeng, Yan & Jin, Yu & Zhang, Bin & Huang, Zhonghua & Wei, Kexiang & Chen, Jingwei & Zhu, Hao & Deng, Yuanwang, 2020. "Heat dissipation investigation of the power lithium-ion battery module based on orthogonal experiment design and fuzzy grey relation analysis," Energy, Elsevier, vol. 211(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219323497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.