IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v191y2020ics0360544219322741.html
   My bibliography  Save this article

Energy and cost efficient manganese chemical looping air separation cycle for decarbonized power generation based on oxy-fuel combustion and gasification

Author

Listed:
  • Cormos, Calin-Cristian

Abstract

Oxy-fuel combustion and gasification technologies for power generation require significant oxygen consumption. The actual oxygen production method involves cryogenic systems, the most important shortcomings of this process are high ancillary electricity consumption and high capital costs. Chemical Looping Air Separation (CLAS) concept represents an emerging oxygen generation option with significantly lower energy consumption. The present work is evaluating the key performance indexes of manganese-based CLAS unit to be combined with coal and lignite oxy-fuel and gasification power plants. As comparison cases, the same power generation designs were assessed using conventional cryogenic air separation. The evaluations considered large industrial scale power plants with about 370–500 MW net electricity production and a 90% overall plant decarbonisation degree. The detailed investigations demonstrated that manganese-based looping cycle improves significantly the main techno-economic performances compared to the benchmark cases e.g. higher energy efficiency up to 9%, lower specific CO2 emissions down to 10%, reduced overall plant energy penalty for decarbonisation by 2–3.5 net electricity percentage points, decreased capital costs by 10–18% and electricity cost by about 7–12% etc.

Suggested Citation

  • Cormos, Calin-Cristian, 2020. "Energy and cost efficient manganese chemical looping air separation cycle for decarbonized power generation based on oxy-fuel combustion and gasification," Energy, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:energy:v:191:y:2020:i:c:s0360544219322741
    DOI: 10.1016/j.energy.2019.116579
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219322741
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abbasi, Tasneem & Abbasi, S.A., 2011. "Decarbonization of fossil fuels as a strategy to control global warming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1828-1834, May.
    2. Zhu, Lin & He, Yangdong & Li, Luling & Wu, Pengbin, 2018. "Tech-economic assessment of second-generation CCS: Chemical looping combustion," Energy, Elsevier, vol. 144(C), pages 915-927.
    3. Cormos, Calin-Cristian, 2012. "Integrated assessment of IGCC power generation technology with carbon capture and storage (CCS)," Energy, Elsevier, vol. 42(1), pages 434-445.
    4. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    5. Calin-Cristian Cormos, 2018. "Techno-Economic Evaluations of Copper-Based Chemical Looping Air Separation System for Oxy-Combustion and Gasification Power Plants with Carbon Capture," Energies, MDPI, vol. 11(11), pages 1-17, November.
    6. Tola, Vittorio & Pettinau, Alberto, 2014. "Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies," Applied Energy, Elsevier, vol. 113(C), pages 1461-1474.
    7. Hanak, Dawid P. & Powell, Dante & Manovic, Vasilije, 2017. "Techno-economic analysis of oxy-combustion coal-fired power plant with cryogenic oxygen storage," Applied Energy, Elsevier, vol. 191(C), pages 193-203.
    8. Cormos, Calin-Cristian & Vatopoulos, Konstantinos & Tzimas, Evangelos, 2013. "Assessment of the consumption of water and construction materials in state-of-the-art fossil fuel power generation technologies involving CO2 capture," Energy, Elsevier, vol. 51(C), pages 37-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qing, Menglei & Jin, Bo & Ma, Jinchen & Zou, Xixian & Wang, Xiaoyu & Zheng, Chuguang & Zhao, Haibo, 2020. "Thermodynamic and economic performance of oxy-combustion power plants integrating chemical looping air separation," Energy, Elsevier, vol. 206(C).
    2. Serrano, José Ramón & Arnau, Francisco José & García-Cuevas, Luis Miguel & Gutiérrez, Fabio Alberto, 2022. "Thermo-economic analysis of an oxygen production plant powered by an innovative energy recovery system," Energy, Elsevier, vol. 255(C).
    3. Wienchol, Paulina & Szlęk, Andrzej & Ditaranto, Mario, 2020. "Waste-to-energy technology integrated with carbon capture – Challenges and opportunities," Energy, Elsevier, vol. 198(C).
    4. García-Luna, S. & Ortiz, C. & Carro, A. & Chacartegui, R. & Pérez-Maqueda, L.A., 2022. "Oxygen production routes assessment for oxy-fuel combustion," Energy, Elsevier, vol. 254(PB).
    5. Muhammad Haris Hamayun & Naveed Ramzan & Murid Hussain & Muhammad Faheem, 2020. "Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis," Energies, MDPI, vol. 13(23), pages 1-20, December.
    6. Ortiz, C. & García-Luna, S. & Carro, A. & Chacartegui, R. & Pérez-Maqueda, L., 2023. "Negative emissions power plant based on flexible calcium-looping process integrated with renewables and methane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    7. Cormos, Calin-Cristian & Dinca, Cristian, 2021. "Techno-economic and environmental implications of decarbonization process applied for Romanian fossil-based power generation sector," Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cormos, Calin-Cristian, 2014. "Economic evaluations of coal-based combustion and gasification power plants with post-combustion CO2 capture using calcium looping cycle," Energy, Elsevier, vol. 78(C), pages 665-673.
    2. Calin-Cristian Cormos, 2018. "Techno-Economic Evaluations of Copper-Based Chemical Looping Air Separation System for Oxy-Combustion and Gasification Power Plants with Carbon Capture," Energies, MDPI, vol. 11(11), pages 1-17, November.
    3. Janusz Zdeb & Natalia Howaniec & Adam Smoliński, 2019. "Utilization of Carbon Dioxide in Coal Gasification—An Experimental Study," Energies, MDPI, vol. 12(1), pages 1-12, January.
    4. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    5. Cormos, Calin-Cristian, 2023. "Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis," Energy, Elsevier, vol. 270(C).
    6. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    7. Andrea Porcu & Stefano Sollai & Davide Marotto & Mauro Mureddu & Francesca Ferrara & Alberto Pettinau, 2019. "Techno-Economic Analysis of a Small-Scale Biomass-to-Energy BFB Gasification-Based System," Energies, MDPI, vol. 12(3), pages 1-17, February.
    8. Zheng, Yawen & Gao, Lin & Li, Sheng & Wang, Dan, 2022. "A comprehensive evaluation model for full-chain CCUS performance based on the analytic hierarchy process method," Energy, Elsevier, vol. 239(PD).
    9. Wang, Yuan & Zhu, Lin & He, Yangdong & Yu, Jianting & Zhang, Chaoli & Wang, Zi, 2023. "Comparative exergoeconomic analysis of atmosphere and pressurized CLC power plants coupled with supercritical CO2 cycle," Energy, Elsevier, vol. 265(C).
    10. Míguez, José Luis & Porteiro, Jacobo & Pérez-Orozco, Raquel & Patiño, David & Gómez, Miguel Ángel, 2020. "Biological systems for CCS: Patent review as a criterion for technological development," Applied Energy, Elsevier, vol. 257(C).
    11. Antonio Coppola & Fabrizio Scala, 2020. "A Preliminary Techno-Economic Analysis on the Calcium Looping Process with Simultaneous Capture of CO 2 and SO 2 from a Coal-Based Combustion Power Plant," Energies, MDPI, vol. 13(9), pages 1-9, May.
    12. Xiping Wang & Hongdou Zhang, 2018. "Optimal design of carbon tax to stimulate CCS investment in China's coal‐fired power plants: A real options analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(5), pages 863-875, October.
    13. Zhao, Ying-jie & Zhang, Yu-ke & Cui, Yang & Duan, Yuan-yuan & Huang, Yi & Wei, Guo-qiang & Mohamed, Usama & Shi, Li-juan & Yi, Qun & Nimmo, William, 2022. "Pinch combined with exergy analysis for heat exchange network and techno-economic evaluation of coal chemical looping combustion power plant with CO2 capture," Energy, Elsevier, vol. 238(PA).
    14. Lee, Woo-Sung & Oh, Hyun-Taek & Lee, Jae-Cheol & Oh, Min & Lee, Chang-Ha, 2019. "Performance analysis and carbon reduction assessment of an integrated syngas purification process for the co-production of hydrogen and power in an integrated gasification combined cycle plant," Energy, Elsevier, vol. 171(C), pages 910-927.
    15. Wang, Lu & Wei, Yi-Ming & Brown, Marilyn A., 2017. "Global transition to low-carbon electricity: A bibliometric analysis," Applied Energy, Elsevier, vol. 205(C), pages 57-68.
    16. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    17. Dinca, Cristian & Slavu, Nela & Cormoş, Călin-Cristian & Badea, Adrian, 2018. "CO2 capture from syngas generated by a biomass gasification power plant with chemical absorption process," Energy, Elsevier, vol. 149(C), pages 925-936.
    18. Mishra, Navneet & Bhui, Barnali & Vairakannu, Prabu, 2019. "Comparative evaluation of performance of high and low ash coal fuelled chemical looping combustion integrated combined cycle power generating systems," Energy, Elsevier, vol. 169(C), pages 305-318.
    19. Cao, Yang & He, Boshu & Ding, Guangchao & Su, Liangbin & Duan, Zhipeng, 2017. "Energy and exergy investigation on two improved IGCC power plants with different CO2 capture schemes," Energy, Elsevier, vol. 140(P1), pages 47-57.
    20. Mikulčić, Hrvoje & Ridjan Skov, Iva & Dominković, Dominik Franjo & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Tan, Raymond & Duić, Neven & Hidayah Mohamad, Siti Nur & Wang, Xuebin, 2019. "Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:191:y:2020:i:c:s0360544219322741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.