IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v188y2019ics0360544219316986.html
   My bibliography  Save this article

A theoretical study of entropy generation of the combustion phenomenon in the porous medium burner

Author

Listed:
  • Mohammadi, Iman
  • Ajam, Hossein

Abstract

In this paper, a symmetric two-dimensional numerical model for premixed methane-air combustion in a porous medium has been developed. For this purpose, multi-step mechanisms and variable porosity have been used and the effects of them on the entropy generation rate have been investigated. This model solves the continuity, Navier Stokes, the solid and gas energy, the chemical species transport equations and entropy generation rate equations by using the finite volume method and the pressure and velocity have been coupled with the SIMPLE algorithm. The results reveal that the entropy generation due to heat transfer has the highest contribution to entropy generation and after that are the chemical reactions, mass diffusion, and friction respectively. When used from porosity variation the entropy generation rate due to heat transfer, chemical reaction and friction are reduced and for the entropy generation due to mass diffusion is vice versa.

Suggested Citation

  • Mohammadi, Iman & Ajam, Hossein, 2019. "A theoretical study of entropy generation of the combustion phenomenon in the porous medium burner," Energy, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:energy:v:188:y:2019:i:c:s0360544219316986
    DOI: 10.1016/j.energy.2019.116004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219316986
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bejan, Adrian, 1980. "Second law analysis in heat transfer," Energy, Elsevier, vol. 5(8), pages 720-732.
    2. Mujeebu, M. Abdul & Abdullah, M.Z. & Mohamad, A.A., 2011. "Development of energy efficient porous medium burners on surface and submerged combustion modes," Energy, Elsevier, vol. 36(8), pages 5132-5139.
    3. Bidi, M. & Nobari, M.R.H. & Avval, M. Saffar, 2010. "A numerical evaluation of combustion in porous media by EGM (Entropy Generation Minimization)," Energy, Elsevier, vol. 35(8), pages 3483-3500.
    4. Arjmandi, H.R. & Amani, E., 2015. "A numerical investigation of the entropy generation in and thermodynamic optimization of a combustion chamber," Energy, Elsevier, vol. 81(C), pages 706-718.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Qingguo & Xie, Bo & Yang, Wenming & Tang, Shihao & Li, Zhenwei & Zhou, Peng & Luo, Ningkang, 2021. "Effects of porosity and multilayers of porous medium on the hydrogen-fueled combustion and micro-thermophotovoltaic," Renewable Energy, Elsevier, vol. 174(C), pages 391-402.
    2. Peng, Qingguo & Shi, Zhiwei & Xie, Bo & Huang, Zhixin & Tang, Shihao & Li, Xianhua & Huang, Haisong & E, Jiaqiang, 2023. "Optimisation of a micro-thermophotovoltaic with porous media inserted burner for electrical power improvement," Renewable Energy, Elsevier, vol. 215(C).
    3. Senda Agrebi & Louis Dreßler & Hendrik Nicolai & Florian Ries & Kaushal Nishad & Amsini Sadiki, 2021. "Analysis of Local Exergy Losses in Combustion Systems Using a Hybrid Filtered Eulerian Stochastic Field Coupled with Detailed Chemistry Tabulation: Cases of Flames D and E," Energies, MDPI, vol. 14(19), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pahlevaninezhad, Masoud & Davazdah Emami, Mohsen & Panjepour, Masoud, 2014. "The effects of kinetic parameters on combustion characteristics in a sintering bed," Energy, Elsevier, vol. 73(C), pages 160-176.
    2. Wang, Hongmin & Wei, Chunzhi & Zhao, Pinghui & Ye, Taohong, 2014. "Experimental study on temperature variation in a porous inert media burner for premixed methane air combustion," Energy, Elsevier, vol. 72(C), pages 195-200.
    3. Bejan, Adrian, 2018. "Thermodynamics today," Energy, Elsevier, vol. 160(C), pages 1208-1219.
    4. Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Effects of rarefaction, viscous dissipation and rotation mode on the first and second law analyses of rarefied gaseous slip flows confined between a rotating shaft and its concentric housing," Energy, Elsevier, vol. 37(1), pages 359-370.
    5. Xu, Mingtian, 2012. "Variational principles in terms of entransy for heat transfer," Energy, Elsevier, vol. 44(1), pages 973-977.
    6. Sciacovelli, A. & Verda, V. & Sciubba, E., 2015. "Entropy generation analysis as a design tool—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1167-1181.
    7. Matin, Meisam Habibi & Khan, Waqar Ahmed, 2013. "Entropy generation analysis of heat and mass transfer in mixed electrokinetically and pressure driven flow through a slit microchannel," Energy, Elsevier, vol. 56(C), pages 207-217.
    8. Khaliq, Abdul, 2004. "Thermodynamic optimization of laminar viscous flow under convective heat-transfer through an isothermal walled duct," Applied Energy, Elsevier, vol. 78(3), pages 289-304, July.
    9. Adesanya, Samuel O. & Kareem, Semiu O. & Falade, John A. & Arekete, Samson A., 2015. "Entropy generation analysis for a reactive couple stress fluid flow through a channel saturated with porous material," Energy, Elsevier, vol. 93(P1), pages 1239-1245.
    10. Ibáñez, Guillermo & Cuevas, Sergio, 2010. "Entropy generation minimization of a MHD (magnetohydrodynamic) flow in a microchannel," Energy, Elsevier, vol. 35(10), pages 4149-4155.
    11. Asgari, Behrad & Amani, Ehsan, 2017. "A multi-objective CFD optimization of liquid fuel spray injection in dry-low-emission gas-turbine combustors," Applied Energy, Elsevier, vol. 203(C), pages 696-710.
    12. Mueller, Kyle T. & Waters, Oliver & Bubnovich, Valeri & Orlovskaya, Nina & Chen, Ruey-Hung, 2013. "Super-adiabatic combustion in Al2O3 and SiC coated porous media for thermoelectric power conversion," Energy, Elsevier, vol. 56(C), pages 108-116.
    13. Kaluri, Ram Satish & Basak, Tanmay, 2011. "Entropy generation due to natural convection in discretely heated porous square cavities," Energy, Elsevier, vol. 36(8), pages 5065-5080.
    14. Khan, Sohail A. & Hayat, T. & Alsaedi, A. & Ahmad, B., 2021. "Melting heat transportation in radiative flow of nanomaterials with irreversibility analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    15. Janvekar, Ayub Ahmed & Miskam, M.A. & Abas, Aizat & Ahmad, Zainal Arifin & Juntakan, T. & Abdullah, M.Z., 2017. "Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner," Energy, Elsevier, vol. 122(C), pages 103-110.
    16. Asinari, Pietro & Chiavazzo, Eliodoro, 2014. "The notion of energy through multiple scales: From a molecular level to fluid flows and beyond," Energy, Elsevier, vol. 68(C), pages 870-876.
    17. Gaikwad, Harshad Sanjay & Basu, Dipankar Narayan & Mondal, Pranab Kumar, 2017. "Non-linear drag induced irreversibility minimization in a viscous dissipative flow through a micro-porous channel," Energy, Elsevier, vol. 119(C), pages 588-600.
    18. Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Advantages and disadvantages associated with introducing an extra rarefied gas layer into a rotating microsystem filled with a liquid lubricant: First and second law analyses," Energy, Elsevier, vol. 45(1), pages 716-728.
    19. Srinivasacharya, D. & Bindu, K. Hima, 2016. "Entropy generation in a porous annulus due to micropolar fluid flow with slip and convective boundary conditions," Energy, Elsevier, vol. 111(C), pages 165-177.
    20. Deb, Sunita & Muthukumar, P., 2021. "Development and performance assessment of LPG operated cluster Porous Radiant Burner for commercial cooking and industrial applications," Energy, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:188:y:2019:i:c:s0360544219316986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.