IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v174y2019icp897-910.html

Investigation of biomass conversion on a moving grate by pyrolysis gas analysis and fuel bed modelling

Author

Listed:
  • Barroso, Gabriel
  • Roth, Simon
  • Nussbaumer, Thomas

Abstract

A profound understanding of the fuel conversion on a grate boiler is crucial for an optimised boiler operation with a minimised pollutant emission. This work presents gas measurements and numeric simulations of a 150 kW moving grate boiler. The fuel bed model considers drying, pyrolysis and gasification. In the experiments, temperature profiles above the fuel bed and the fuel bed height are measured. Pyrolysis gas is sampled with a cooled probe and analysed on its CO, CO2, CH4, VOC, H2O, H2 and O2 composition. The experiments show that drying occurs in the first third of the grate with a relatively constant release of water vapour from the fuel bed. The temperature of the dried fuel further increases on the grate. The release of volatiles from the fuel pyrolysis starts towards the end of the drying zone and occurs in a relatively narrow zone. The fuel bed simulations are validated, discussed and used to analyse the influence of parameters on the fuel conversion such as the moisture content of the fuel and the primary air distribution. The model forms a basis to calculate the entry conditions for subsequent gas phase simulations.

Suggested Citation

  • Barroso, Gabriel & Roth, Simon & Nussbaumer, Thomas, 2019. "Investigation of biomass conversion on a moving grate by pyrolysis gas analysis and fuel bed modelling," Energy, Elsevier, vol. 174(C), pages 897-910.
  • Handle: RePEc:eee:energy:v:174:y:2019:i:c:p:897-910
    DOI: 10.1016/j.energy.2019.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219304062
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Nussbaumer, T. & Thalmann, S., 2016. "Influence of system design on heat distribution costs in district heating," Energy, Elsevier, vol. 101(C), pages 496-505.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Igor Donskoy, 2023. "Particle Agglomeration of Biomass and Plastic Waste during Their Thermochemical Fixed-Bed Conversion," Energies, MDPI, vol. 16(12), pages 1-25, June.
    2. Feldmeier, Sabine & Schwarz, Markus & Wopienka, Elisabeth & Pfeifer, Christoph, 2021. "Categorization of small-scale biomass combustion appliances by characteristic numbers," Renewable Energy, Elsevier, vol. 163(C), pages 2128-2136.
    3. Ma, Teng & Zhou, Hongquan & Xu, Fang & Chen, Dezhen & Qian, Kezhen & Yin, Lijie, 2024. "Numerical simulation and intelligent prediction of a 500 t/d municipal solid waste incinerator," Energy, Elsevier, vol. 312(C).
    4. Xia, Zihong & Long, Jisheng & Yan, Shuai & Bai, Li & Du, Hailiang & Chen, Caixia, 2021. "Two-fluid simulation of moving grate waste incinerator: Comparison of 2D and 3D bed models," Energy, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    2. Arat, Halit & Arslan, Oguz, 2017. "Exergoeconomic analysis of district heating system boosted by the geothermal heat pump," Energy, Elsevier, vol. 119(C), pages 1159-1170.
    3. Chambers, Jonathan & Narula, Kapil & Sulzer, Matthias & Patel, Martin K., 2019. "Mapping district heating potential under evolving thermal demand scenarios and technologies: A case study for Switzerland," Energy, Elsevier, vol. 176(C), pages 682-692.
    4. Lianzhong Sun & Hongyu Xiao & Zheng Chu & Lin Qiao & Yingqiang Yang & Lei Wang & Wenzhong Tian & Yinhui Zuo & Ting Li & Haijun Tang & Liping Chen & Dong Xiao, 2025. "Techno-Economic Evaluation of Geothermal Energy Utilization of Co-Produced Water from Natural Gas Production," Energies, MDPI, vol. 18(14), pages 1-31, July.
    5. Lambert, Jerry & Spliethoff, Hartmut, 2024. "A two-phase nonlinear optimization method for routing and sizing district heating systems," Energy, Elsevier, vol. 302(C).
    6. Ziemele, Jelena & Gravelsins, Armands & Blumberga, Andra & Blumberga, Dagnija, 2017. "Sustainability of heat energy tariff in district heating system: Statistic and dynamic methodologies," Energy, Elsevier, vol. 137(C), pages 834-845.
    7. Dibos, Sina & Pesch, Thiemo & Benigni, Andrea, 2024. "HeatNetSim: An open-source simulation tool for heating and cooling networks suitable for future energy systems," Energy, Elsevier, vol. 312(C).
    8. Bertrand, Alexandre & Mian, Alberto & Kantor, Ivan & Aggoune, Riad & Maréchal, François, 2019. "Regional waste heat valorisation: A mixed integer linear programming method for energy service companies," Energy, Elsevier, vol. 167(C), pages 454-468.
    9. Hür Bütün & Ivan Kantor & François Maréchal, 2019. "Incorporating Location Aspects in Process Integration Methodology," Energies, MDPI, vol. 12(17), pages 1-45, August.
    10. Ramos-Teodoro, Jerónimo & Álvarez, José Domingo & Torres, José Luis, 2024. "A methodology for feasibility analyses of district heating networks: A case study applied to greenhouse crops," Energy, Elsevier, vol. 301(C).
    11. Mc Guire, Jason & Petrović, Stefan N. & Daly, Hannah & Rogan, Fionn & Smith, Andrew & Balyk, Olexandr, 2024. "Is District Heating a cost-effective solution to decarbonise Irish buildings?," Energy, Elsevier, vol. 296(C).
    12. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    13. Lizana, Jesús & Ortiz, Carlos & Soltero, Víctor M. & Chacartegui, Ricardo, 2017. "District heating systems based on low-carbon energy technologies in Mediterranean areas," Energy, Elsevier, vol. 120(C), pages 397-416.
    14. Zwickl-Bernhard, Sebastian & Auer, Hans, 2022. "Demystifying natural gas distribution grid decommissioning: An open-source approach to local deep decarbonization of urban neighborhoods," Energy, Elsevier, vol. 238(PB).
    15. Hür Bütün & Ivan Kantor & François Maréchal, 2019. "An Optimisation Approach for Long-Term Industrial Investment Planning," Energies, MDPI, vol. 12(21), pages 1-33, October.
    16. Salah Vaisi & Saleh Mohammadi & Kyoumars Habibi, 2021. "Heat Mapping, a Method for Enhancing the Sustainability of the Smart District Heat Networks," Energies, MDPI, vol. 14(17), pages 1-17, September.
    17. Shabtai Isaac & Slava Shubin & Gad Rabinowitz, 2020. "Cost-Optimal Net Zero Energy Communities," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    18. Bachmann, Max & Kriegel, Martin, 2023. "Assessing the heat distribution costs of linear and radial district heating networks: A methodological approach," Energy, Elsevier, vol. 276(C).
    19. Ziemele, Jelena & Cilinskis, Einars & Blumberga, Dagnija, 2018. "Pathway and restriction in district heating systems development towards 4th generation district heating," Energy, Elsevier, vol. 152(C), pages 108-118.
    20. Egberts, Paul & Tümer, Can & Loh, Kelvin & Octaviano, Ryvo, 2020. "Challenges in heat network design optimization," Energy, Elsevier, vol. 203(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:174:y:2019:i:c:p:897-910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.