IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v173y2019icp443-456.html
   My bibliography  Save this article

Design optimization and sensitivity analysis of the radiation mini-channel metal hydride reactor

Author

Listed:
  • Wang, Di
  • Wang, Yuqi
  • Huang, Zhuonan
  • Yang, Fusheng
  • Wu, Zhen
  • Zheng, Lan
  • Wu, Le
  • Zhang, Zaoxiao

Abstract

The hydrogenation process usually accompanies with strong thermal effect, which may lead to the poor hydriding performance if the reaction heat cannot be removed promptly. The design and optimization of metal hydride reactor can significantly advance heat & mass transfer and H2 storage efficiency. A novel radiation mini-channel reactor (RMCR) was proposed to improve the thermal efficiency, and a radiation mini-channel reactor with jacket (RMCR-J) was developed to eliminate the unfavorable heat transfer regions inside RMCR. The 7 reactors were extensively investigated and compared by 3D COMSOL models, revealing that radiation tube behaved the best reaction performance. The structural parameters of RMCR & RMCR-J were optimized as spread branch number of 3, main tube radius of 2 mm, branch tube radius of 2 mm, axial pitch of 5 mm, mounting distance of 8.5 mm and tilt angle of 0°. Moreover, the operation conditions were simulated and the optimal performance could be achieved at H2 pressure of 1 MPa and initial fluid temperature of 293 K. The sensitivity analysis results indicated that axial pitch and mounting distance was the most sensitive structure factor for RMCR and RMCR-J, respectively. In addition, RMCR-J was confirmed to present a superior performance than RMCR.

Suggested Citation

  • Wang, Di & Wang, Yuqi & Huang, Zhuonan & Yang, Fusheng & Wu, Zhen & Zheng, Lan & Wu, Le & Zhang, Zaoxiao, 2019. "Design optimization and sensitivity analysis of the radiation mini-channel metal hydride reactor," Energy, Elsevier, vol. 173(C), pages 443-456.
  • Handle: RePEc:eee:energy:v:173:y:2019:i:c:p:443-456
    DOI: 10.1016/j.energy.2019.02.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219302221
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kikkinides, Eustathios S. & Georgiadis, Michael C. & Stubos, Athanasios K., 2006. "Dynamic modelling and optimization of hydrogen storage in metal hydride beds," Energy, Elsevier, vol. 31(13), pages 2428-2446.
    2. Corgnale, Claudio & Hardy, Bruce & Chahine, Richard & Cossement, Daniel, 2018. "Hydrogen desorption using honeycomb finned heat exchangers integrated in adsorbent storage systems," Applied Energy, Elsevier, vol. 213(C), pages 426-434.
    3. Meng, Xiangyu & Yang, Fusheng & Bao, Zewei & Deng, Jianqiang & Serge, Nyallang N. & Zhang, Zaoxiao, 2010. "Theoretical study of a novel solar trigeneration system based on metal hydrides," Applied Energy, Elsevier, vol. 87(6), pages 2050-2061, June.
    4. Gkanas, Evangelos I. & Khzouz, Martin & Panagakos, Grigorios & Statheros, Thomas & Mihalakakou, Giouli & Siasos, Gerasimos I. & Skodras, Georgios & Makridis, Sofoklis S., 2018. "Hydrogenation behavior in rectangular metal hydride tanks under effective heat management processes for green building applications," Energy, Elsevier, vol. 142(C), pages 518-530.
    5. Paskevicius, M. & Sheppard, D.A. & Williamson, K. & Buckley, C.E., 2015. "Metal hydride thermal heat storage prototype for concentrating solar thermal power," Energy, Elsevier, vol. 88(C), pages 469-477.
    6. Kim, K.J. & Feldman, K.T. & Razani, A., 1997. "Cooling and power efficiency diagrams for compressor-driven, metal-hydride slurry air conditioners," Energy, Elsevier, vol. 22(8), pages 787-796.
    7. Chung, C.A. & Yang, Su-Wen & Yang, Chien-Yuh & Hsu, Che-Weu & Chiu, Pai-Yuh, 2013. "Experimental study on the hydrogen charge and discharge rates of metal hydride tanks using heat pipes to enhance heat transfer," Applied Energy, Elsevier, vol. 103(C), pages 581-587.
    8. Pan, Z.H. & Zhao, C.Y., 2017. "Gas–solid thermochemical heat storage reactors for high-temperature applications," Energy, Elsevier, vol. 130(C), pages 155-173.
    9. Feng, Penghui & Wu, Zhen & Zhang, Yang & Yang, Fusheng & Wang, Yuqi & Zhang, Zaoxiao, 2018. "Multi-level configuration and optimization of a thermal energy storage system using a metal hydride pair," Applied Energy, Elsevier, vol. 217(C), pages 25-36.
    10. Wu, Zhen & Yang, Fusheng & Zhang, Zaoxiao & Bao, Zewei, 2014. "Magnesium based metal hydride reactor incorporating helical coil heat exchanger: Simulation study and optimal design," Applied Energy, Elsevier, vol. 130(C), pages 712-722.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Xi & Zhu, Qi & Leng, Haiyan & Yang, Hongguang & Lyu, Tao & Li, Qian, 2019. "Numerical analysis of the effects of particle radius and porosity on hydrogen absorption performances in metal hydride tank," Applied Energy, Elsevier, vol. 250(C), pages 1065-1072.
    2. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study," Energy, Elsevier, vol. 220(C).
    3. Liu, Yang & Ayub, Iqra & Khan, Muhammad Raheel & Yang, Fusheng & Wu, Zhen & Zhang, Zaoxiao, 2022. "Numerical investigation of metal hydride heat storage reactor with two types multiple heat transfer tubes structures," Energy, Elsevier, vol. 253(C).
    4. Ye, Yang & Yue, Yi & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials," Renewable Energy, Elsevier, vol. 180(C), pages 734-743.
    5. Wang, Di & Wang, Yuqi & Wang, Feng & Zheng, Shuaishuai & Guan, Sinan & Zheng, Lan & Wu, Le & Yang, Xin & Lv, Ming & Zhang, Zaoxiao, 2022. "Optimal design of disc mini-channel metal hydride reactor with high hydrogen storage efficiency," Applied Energy, Elsevier, vol. 308(C).
    6. Mu Chai & Jiahui Tan & Lingwei Gao & Zhenan Liu & Yong Chen & Kuanfang He & Mian Jiang, 2022. "Effects of Different Heat Transfer Conditions on the Hydrogen Desorption Performance of a Metal Hydride Hydrogen Storage Tank," Energies, MDPI, vol. 15(22), pages 1-16, November.
    7. Zheng, Shuaishuai & Wang, Yuqi & Wang, Di & Guan, Sinan & Liu, Ying & Wang, Feng & Zheng, Lan & Wu, Le & Gao, Xiong & Zhang, Zaoxiao, 2023. "Design and performance study on the primary & secondary helical-tube reactor," Energy, Elsevier, vol. 263(PD).
    8. Liu, Yang & Wang, Hongxia & Ayub, Iqra & Yang, Fusheng & Wu, Zhen & Zhang, Zaoxiao, 2021. "A variable cross-section annular fins type metal hydride reactor for improving the phenomenon of inhomogeneous reaction in the thermal energy storage processes," Applied Energy, Elsevier, vol. 295(C).
    9. Wang, Ke & Chen, Wei & Li, Lu, 2022. "Multi-field coupled modeling of metal hydride hydrogen storage: A resistance atlas for H2 absorption reaction and heat-mass transport," Renewable Energy, Elsevier, vol. 187(C), pages 1118-1129.
    10. Ye, Yang & Zhu, Hongxing & Cheng, Honghui & Miao, Hong & Ding, Jing & Wang, Weilong, 2023. "Performance optimization of metal hydride hydrogen storage reactors based on PCM thermal management," Applied Energy, Elsevier, vol. 338(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Di & Wang, Yuqi & Wang, Feng & Zheng, Shuaishuai & Guan, Sinan & Zheng, Lan & Wu, Le & Yang, Xin & Lv, Ming & Zhang, Zaoxiao, 2022. "Optimal design of disc mini-channel metal hydride reactor with high hydrogen storage efficiency," Applied Energy, Elsevier, vol. 308(C).
    2. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Hydrogen absorption performance investigation of a cylindrical MH reactor with rectangle heat exchange channels," Energy, Elsevier, vol. 232(C).
    3. Xiao, Jinsheng & Tong, Liang & Bénard, Pierre & Chahine, Richard, 2020. "Thermodynamic analysis for hydriding-dehydriding cycle of metal hydride system," Energy, Elsevier, vol. 191(C).
    4. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study," Energy, Elsevier, vol. 220(C).
    5. Lewis, Swaraj D. & Chippar, Purushothama, 2020. "Numerical investigation of hydrogen absorption in a metal hydride reactor with embedded embossed plate heat exchanger," Energy, Elsevier, vol. 194(C).
    6. Lin, Xi & Zhu, Qi & Leng, Haiyan & Yang, Hongguang & Lyu, Tao & Li, Qian, 2019. "Numerical analysis of the effects of particle radius and porosity on hydrogen absorption performances in metal hydride tank," Applied Energy, Elsevier, vol. 250(C), pages 1065-1072.
    7. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Dai, Zhou-Qiao & Yang, Fu-Sheng, 2022. "Parametric optimization of coupled fin-metal foam metal hydride bed towards enhanced hydrogen absorption performance of metal hydride hydrogen storage device," Energy, Elsevier, vol. 243(C).
    8. Malleswararao, K. & Aswin, N. & Srinivasa Murthy, S. & Dutta, Pradip, 2022. "Studies on long-term and buffer modes of operations of a thermal energy storage system using coupled metal hydrides," Energy, Elsevier, vol. 258(C).
    9. Ye, Yang & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2020. "Numerical simulation on the storage performance of a phase change materials based metal hydride hydrogen storage tank," Applied Energy, Elsevier, vol. 278(C).
    10. Kim, Sung Han & Miesse, Craig M. & Lee, Hee Bum & Chang, Ik Whang & Hwang, Yong Sheen & Jang, Jae Hyuk & Cha, Suk Won, 2014. "Ultra compact direct hydrogen fuel cell prototype using a metal hydride hydrogen storage tank for a mobile phone," Applied Energy, Elsevier, vol. 134(C), pages 382-391.
    11. Ye, Yang & Yue, Yi & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials," Renewable Energy, Elsevier, vol. 180(C), pages 734-743.
    12. Ye, Yang & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "The storage performance of metal hydride hydrogen storage tanks with reaction heat recovery by phase change materials," Applied Energy, Elsevier, vol. 299(C).
    13. Liu, Yang & Wang, Hongxia & Ayub, Iqra & Yang, Fusheng & Wu, Zhen & Zhang, Zaoxiao, 2021. "A variable cross-section annular fins type metal hydride reactor for improving the phenomenon of inhomogeneous reaction in the thermal energy storage processes," Applied Energy, Elsevier, vol. 295(C).
    14. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    15. Ayub, Iqra & Nasir, Muhammad Salman & Liu, Yang & Munir, Anjum & Yang, Fusheng & Zhang, Zaoxiao, 2020. "Performance improvement of solar bakery unit by integrating with metal hydride based solar thermal energy storage reactor," Renewable Energy, Elsevier, vol. 161(C), pages 1011-1024.
    16. Gkanas, Evangelos I. & Christodoulou, Christodoulos N. & Tzamalis, George & Stamatakis, Emmanuel & Chroneos, Alexander & Deligiannis, Konstantinos & Karagiorgis, George & Stubos, Athanasios K., 2020. "Numerical investigation on the operation and energy demand of a seven-stage metal hydride hydrogen compression system for Hydrogen Refuelling Stations," Renewable Energy, Elsevier, vol. 147(P1), pages 164-178.
    17. Dizaji, Hossein Beidaghy & Hosseini, Hannaneh, 2018. "A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 9-26.
    18. Kou, Huaqin & Huang, Zhiyong & Luo, Wenhua & Sang, Ge & Meng, Daqiao & Luo, Deli & Zhang, Guanghui & Chen, Hao & Zhou, Ying & Hu, Changwen, 2015. "Experimental study on full-scale ZrCo and depleted uranium beds applied for fast recovery and delivery of hydrogen isotopes," Applied Energy, Elsevier, vol. 145(C), pages 27-35.
    19. Wang, Ke & Chen, Wei & Li, Lu, 2022. "Multi-field coupled modeling of metal hydride hydrogen storage: A resistance atlas for H2 absorption reaction and heat-mass transport," Renewable Energy, Elsevier, vol. 187(C), pages 1118-1129.
    20. Jiao, Kui & Li, Xianguo & Yin, Yan & Zhou, Yibo & Yu, Shuhai & Du, Qing, 2012. "Effects of various operating conditions on the hydrogen absorption processes in a metal hydride tank," Applied Energy, Elsevier, vol. 94(C), pages 257-269.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:173:y:2019:i:c:p:443-456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.