IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v166y2019icp72-82.html
   My bibliography  Save this article

Machine Learning for the prediction of the dynamic behavior of a small scale ORC system

Author

Listed:
  • Palagi, Laura
  • Pesyridis, Apostolos
  • Sciubba, Enrico
  • Tocci, Lorenzo

Abstract

Dynamic modelling plays a crucial role in the analysis of Organic Rankine Cycle (ORC) systems for waste heat recovery, which deal with a highly unsteady heat source. The efficiency of small scale ORCs (i.e. below 100 kW power output) is low (<10%). Therefore, it is essential to keep the performance of the system as stable as possible. To do so, it is helpful to be able to predict the dynamic behavior of the system, in order to perform a maximization of its performance over the time.

Suggested Citation

  • Palagi, Laura & Pesyridis, Apostolos & Sciubba, Enrico & Tocci, Lorenzo, 2019. "Machine Learning for the prediction of the dynamic behavior of a small scale ORC system," Energy, Elsevier, vol. 166(C), pages 72-82.
  • Handle: RePEc:eee:energy:v:166:y:2019:i:c:p:72-82
    DOI: 10.1016/j.energy.2018.10.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218320498
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.10.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adriano Desideri & Bertrand Dechesne & Jorrit Wronski & Martijn Van den Broek & Sergei Gusev & Vincent Lemort & Sylvain Quoilin, 2016. "Comparison of Moving Boundary and Finite-Volume Heat Exchanger Models in the Modelica Language," Energies, MDPI, vol. 9(5), pages 1-18, May.
    2. Rashidi, M.M. & Galanis, N. & Nazari, F. & Basiri Parsa, A. & Shamekhi, L., 2011. "Parametric analysis and optimization of regenerative Clausius and organic Rankine cycles with two feedwater heaters using artificial bees colony and artificial neural network," Energy, Elsevier, vol. 36(9), pages 5728-5740.
    3. Sylvain Quoilin & Ian Bell & Adriano Desideri & Pierre Dewallef & Vincent Lemort, 2014. "Methods to Increase the Robustness of Finite-Volume Flow Models in Thermodynamic Systems," Energies, MDPI, vol. 7(3), pages 1-20, March.
    4. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    5. Quoilin, Sylvain & Lemort, Vincent & Lebrun, Jean, 2010. "Experimental study and modeling of an Organic Rankine Cycle using scroll expander," Applied Energy, Elsevier, vol. 87(4), pages 1260-1268, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Zhang & Li Zhao & Shuai Deng & Ming Li & Yali Liu & Qiongfen Yu & Mengxing Li, 2022. "Novel Off-Design Operation Maps Showing Functionality Limitations of Organic Rankine Cycle Validated by Experiments," Energies, MDPI, vol. 15(21), pages 1-19, November.
    2. Michael Chukwuemeka Ekwonu & Mirae Kim & Binqi Chen & Muhammad Tauseef Nasir & Kyung Chun Kim, 2023. "Dynamic Simulation of Partial Load Operation of an Organic Rankine Cycle with Two Parallel Expanders," Energies, MDPI, vol. 16(1), pages 1-18, January.
    3. Lisheng Pan & Huaixin Wang, 2019. "Experimental Investigation on Performance of an Organic Rankine Cycle System Integrated with a Radial Flow Turbine," Energies, MDPI, vol. 12(4), pages 1-20, February.
    4. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yao, Baofeng & Wang, Yan, 2022. "An outlier removal and feature dimensionality reduction framework with unsupervised learning and information theory intervention for organic Rankine cycle (ORC)," Energy, Elsevier, vol. 254(PB).
    5. Tian, Zhen & Gan, Wanlong & Zou, Xianzhi & Zhang, Yuan & Gao, Wenzhong, 2022. "Performance prediction of a cryogenic organic Rankine cycle based on back propagation neural network optimized by genetic algorithm," Energy, Elsevier, vol. 254(PB).
    6. Wan Rashidi Bin Wan Ramli & Apostolos Pesyridis & Dhrumil Gohil & Fuhaid Alshammari, 2020. "Organic Rankine Cycle Waste Heat Recovery for Passenger Hybrid Electric Vehicles," Energies, MDPI, vol. 13(17), pages 1-27, September.
    7. Imran, Muhammad & Pili, Roberto & Usman, Muhammad & Haglind, Fredrik, 2020. "Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges," Applied Energy, Elsevier, vol. 276(C).
    8. Zhang, Yuan & Wu, Xiaocheng & Tian, Zhen & Gao, Wenzhong & Peng, Hao & Yang, Ke, 2023. "Comparison of random forest, support vector regression, and long short term memory for performance prediction and optimization of a cryogenic organic rankine cycle (ORC)," Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imran, Muhammad & Pili, Roberto & Usman, Muhammad & Haglind, Fredrik, 2020. "Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges," Applied Energy, Elsevier, vol. 276(C).
    2. Roberto Pili & Hartmut Spliethoff & Christoph Wieland, 2017. "Dynamic Simulation of an Organic Rankine Cycle—Detailed Model of a Kettle Boiler," Energies, MDPI, vol. 10(4), pages 1-28, April.
    3. Pili, Roberto & Romagnoli, Alessandro & Jiménez-Arreola, Manuel & Spliethoff, Hartmut & Wieland, Christoph, 2019. "Simulation of Organic Rankine Cycle – Quasi-steady state vs dynamic approach for optimal economic performance," Energy, Elsevier, vol. 167(C), pages 619-640.
    4. Desideri, Adriano & Hernandez, Andres & Gusev, Sergei & van den Broek, Martijn & Lemort, Vincent & Quoilin, Sylvain, 2016. "Steady-state and dynamic validation of a small-scale waste heat recovery system using the ThermoCycle Modelica library," Energy, Elsevier, vol. 115(P1), pages 684-696.
    5. Vaupel, Yannic & Huster, Wolfgang R. & Holtorf, Flemming & Mhamdi, Adel & Mitsos, Alexander, 2019. "Analysis and improvement of dynamic heat exchanger models for nominal and start-up operation," Energy, Elsevier, vol. 169(C), pages 1191-1201.
    6. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    7. Francesconi, Marco & Antonelli, Marco, 2017. "A numerical model for the prediction of the fluid dynamic and mechanical losses of a Wankel-type expansion device," Applied Energy, Elsevier, vol. 205(C), pages 225-235.
    8. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    9. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    10. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications," Renewable Energy, Elsevier, vol. 162(C), pages 1076-1086.
    11. Rosiek, S. & Batlles, F.J., 2010. "Modelling a solar-assisted air-conditioning system installed in CIESOL building using an artificial neural network," Renewable Energy, Elsevier, vol. 35(12), pages 2894-2901.
    12. Buratti, Cinzia & Barelli, Linda & Moretti, Elisa, 2012. "Application of artificial neural network to predict thermal transmittance of wooden windows," Applied Energy, Elsevier, vol. 98(C), pages 425-432.
    13. Subiantoro, Alison & Ooi, Kim Tiow, 2014. "Comparison and performance analysis of the novel revolving vane expander design variants in low and medium pressure applications," Energy, Elsevier, vol. 78(C), pages 747-757.
    14. Kim, Dong Kyu & Lee, Ji Sung & Kim, Jinwoo & Kim, Mo Se & Kim, Min Soo, 2017. "Parametric study and performance evaluation of an organic Rankine cycle (ORC) system using low-grade heat at temperatures below 80°C," Applied Energy, Elsevier, vol. 189(C), pages 55-65.
    15. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    16. Yamada, Noboru & Tominaga, Yoshihito & Yoshida, Takanori, 2014. "Demonstration of 10-Wp micro organic Rankine cycle generator for low-grade heat recovery," Energy, Elsevier, vol. 78(C), pages 806-813.
    17. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    18. Philippopoulos, Kostas & Deligiorgi, Despina, 2012. "Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography," Renewable Energy, Elsevier, vol. 38(1), pages 75-82.
    19. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    20. Jung-Bo Sim & Se-Jin Yook & Young Won Kim, 2022. "Performance Analysis of Organic Rankine Cycle with the Turbine Embedded in a Generator (TEG)," Energies, MDPI, vol. 15(1), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:166:y:2019:i:c:p:72-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.