IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v145y2018icp721-733.html
   My bibliography  Save this article

Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests

Author

Listed:
  • Alberdi-Pagola, Maria
  • Poulsen, Søren Erbs
  • Loveridge, Fleur
  • Madsen, Søren
  • Jensen, Rasmus Lund

Abstract

This paper investigates the applicability of currently available analytical, empirical and numerical heat flow models for interpreting thermal response tests (TRT) of quadratic cross section precast pile heat exchangers. A 3D finite element model (FEM) is utilised for interpreting five TRTs by inverse modelling. The calibrated estimates of soil and concrete thermal conductivity are consistent with independent laboratory measurements. Due to the computational cost of inverting the 3D model, simpler models are utilised in additional calibrations. Interpretations based on semi-empirical pile G-functions yield soil thermal conductivity estimates statistically similar to those obtained from the 3D FEM inverse modelling, given minimum testing times of 60 h. Reliable estimates of pile thermal resistance can only be obtained from type curves computed with 3D FEM models. This study highlights the potential of applying TRTs for sizing quadratic, precast pile heat exchanger foundations.

Suggested Citation

  • Alberdi-Pagola, Maria & Poulsen, Søren Erbs & Loveridge, Fleur & Madsen, Søren & Jensen, Rasmus Lund, 2018. "Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests," Energy, Elsevier, vol. 145(C), pages 721-733.
  • Handle: RePEc:eee:energy:v:145:y:2018:i:c:p:721-733
    DOI: 10.1016/j.energy.2017.12.104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217321473
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.12.104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spitler, Jeffrey D. & Gehlin, Signhild E.A., 2015. "Thermal response testing for ground source heat pump systems—An historical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1125-1137.
    2. Poulsen, S.E. & Alberdi-Pagola, M., 2015. "Interpretation of ongoing thermal response tests of vertical (BHE) borehole heat exchangers with predictive uncertainty based stopping criterion," Energy, Elsevier, vol. 88(C), pages 157-167.
    3. Park, Hyunku & Lee, Seung-Rae & Yoon, Seok & Choi, Jung-Chan, 2013. "Evaluation of thermal response and performance of PHC energy pile: Field experiments and numerical simulation," Applied Energy, Elsevier, vol. 103(C), pages 12-24.
    4. Witte, Henk J.L., 2013. "Error analysis of thermal response tests," Applied Energy, Elsevier, vol. 109(C), pages 302-311.
    5. Bandos, Tatyana V. & Campos-Celador, Álvaro & López-González, Luis M. & Sala-Lizarraga, José M., 2014. "Finite cylinder-source model for energy pile heat exchangers: Effects of thermal storage and vertical temperature variations," Energy, Elsevier, vol. 78(C), pages 639-648.
    6. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    7. Li, Min & Lai, Alvin C.K., 2012. "New temperature response functions (G functions) for pile and borehole ground heat exchangers based on composite-medium line-source theory," Energy, Elsevier, vol. 38(1), pages 255-263.
    8. Jalaluddin, & Miyara, Akio & Tsubaki, Koutaro & Inoue, Shuntaro & Yoshida, Kentaro, 2011. "Experimental study of several types of ground heat exchanger using a steel pile foundation," Renewable Energy, Elsevier, vol. 36(2), pages 764-771.
    9. Loveridge, Fleur & Powrie, William, 2013. "Temperature response functions (G-functions) for single pile heat exchangers," Energy, Elsevier, vol. 57(C), pages 554-564.
    10. Park, Sangwoo & Lee, Dongseop & Choi, Hyun-Jun & Jung, Kyoungsik & Choi, Hangseok, 2015. "Relative constructability and thermal performance of cast-in-place concrete energy pile: Coil-type GHEX (ground heat exchanger)," Energy, Elsevier, vol. 81(C), pages 56-66.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cardoso de Freitas Murari, Milena & de Hollanda Cavalcanti Tsuha, Cristina & Loveridge, Fleur, 2022. "Investigation on the thermal response of steel pipe energy piles with different backfill materials," Renewable Energy, Elsevier, vol. 199(C), pages 44-61.
    2. Faizal, Mohammed & Bouazza, Abdelmalek & McCartney, John S., 2022. "Thermal resistance analysis of an energy pile and adjacent soil using radial temperature gradients," Renewable Energy, Elsevier, vol. 190(C), pages 1066-1077.
    3. Søren Erbs Poulsen & Maria Alberdi-Pagola & Davide Cerra & Anna Magrini, 2019. "An Experimental and Numerical Case Study of Passive Building Cooling with Foundation Pile Heat Exchangers in Denmark," Energies, MDPI, vol. 12(14), pages 1-18, July.
    4. Charles Maragna & Fleur Loveridge, 2021. "A New Approach for Characterizing Pile Heat Exchangers Using Thermal Response Tests," Energies, MDPI, vol. 14(12), pages 1-18, June.
    5. Linden Jensen-Page & Fleur Loveridge & Guillermo A. Narsilio, 2019. "Thermal Response Testing of Large Diameter Energy Piles," Energies, MDPI, vol. 12(14), pages 1-25, July.
    6. Alberdi-Pagola, Maria & Poulsen, Søren Erbs & Jensen, Rasmus Lund & Madsen, Søren, 2020. "A case study of the sizing and optimisation of an energy pile foundation (Rosborg, Denmark)," Renewable Energy, Elsevier, vol. 147(P2), pages 2724-2735.
    7. Bi, Yuehong & Lyu, Tianli & Wang, Hongyan & Sun, Ruirui & Yu, Meize, 2019. "Parameter analysis of single U-tube GHE and dynamic simulation of underground temperature field round one year for GSHP," Energy, Elsevier, vol. 174(C), pages 138-147.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    2. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2016. "A finite line source model with Cauchy-type top boundary conditions for simulating near surface effects on borehole heat exchangers," Energy, Elsevier, vol. 98(C), pages 50-63.
    3. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    4. Zhao, Qiang & Chen, Baoming & Tian, Maocheng & Liu, Fang, 2018. "Investigation on the thermal behavior of energy piles and borehole heat exchangers: A case study," Energy, Elsevier, vol. 162(C), pages 787-797.
    5. Park, Sangwoo & Lee, Seokjae & Sung, Chihun & Choi, Hangseok, 2021. "Applicability evaluation of cast-in-place energy piles based on two-year heating and cooling operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Faizal, Mohammed & Bouazza, Abdelmalek & McCartney, John S., 2022. "Thermal resistance analysis of an energy pile and adjacent soil using radial temperature gradients," Renewable Energy, Elsevier, vol. 190(C), pages 1066-1077.
    7. Tomasz Sliwa & Aneta Sapińska-Śliwa & Tomasz Wysogląd & Tomasz Kowalski & Izabela Konopka, 2021. "Strength Tests of Hardened Cement Slurries for Energy Piles, with the Addition of Graphite and Graphene, in Terms of Increasing the Heat Transfer Efficiency," Energies, MDPI, vol. 14(4), pages 1-20, February.
    8. Park, Sangwoo & Lee, Dongseop & Lee, Seokjae & Chauchois, Alexis & Choi, Hangseok, 2017. "Experimental and numerical analysis on thermal performance of large-diameter cast-in-place energy pile constructed in soft ground," Energy, Elsevier, vol. 118(C), pages 297-311.
    9. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    10. Ma, Qijie & Wang, Peijun, 2020. "Underground solar energy storage via energy piles," Applied Energy, Elsevier, vol. 261(C).
    11. Pan, Aiqiang & McCartney, John S. & Lu, Lin & You, Tian, 2020. "A novel analytical multilayer cylindrical heat source model for vertical ground heat exchangers installed in layered ground," Energy, Elsevier, vol. 200(C).
    12. Li, Min & Zhang, Liwen & Liu, Gang, 2020. "Step-wise algorithm for estimating multi-parameter of the ground and geothermal heat exchangers from thermal response tests," Renewable Energy, Elsevier, vol. 150(C), pages 435-442.
    13. Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Li, Min & Zhang, Liwen & Liu, Gang, 2019. "Estimation of thermal properties of soil and backfilling material from thermal response tests (TRTs) for exploiting shallow geothermal energy: Sensitivity, identifiability, and uncertainty," Renewable Energy, Elsevier, vol. 132(C), pages 1263-1270.
    15. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    16. Jia, Jie & Lee, W.L. & Cheng, Yuanda, 2019. "Field demonstration of a first constant-temperature thermal response test with both heat injection and extraction for ground source heat pump systems," Applied Energy, Elsevier, vol. 249(C), pages 79-86.
    17. Pasquier, Philippe & Marcotte, Denis, 2020. "Robust identification of volumetric heat capacity and analysis of thermal response tests by Bayesian inference with correlated residuals," Applied Energy, Elsevier, vol. 261(C).
    18. Park, Sangwoo & Lee, Seokjae & Park, Sangyeong & Choi, Hangseok, 2022. "Empirical formulas for borehole thermal resistance of parallel U-type cast-in-place energy pile," Renewable Energy, Elsevier, vol. 197(C), pages 211-227.
    19. Cristina Sáez Blázquez & Ignacio Martín Nieto & Arturo Farfán Martín & Diego González-Aguilera & Pedro Carrasco García, 2019. "Comparative Analysis of Different Methodologies Used to Estimate the Ground Thermal Conductivity in Low Enthalpy Geothermal Systems," Energies, MDPI, vol. 12(9), pages 1-14, May.
    20. Paul Christodoulides & Ana Vieira & Stanislav Lenart & João Maranha & Gregor Vidmar & Rumen Popov & Aleksandar Georgiev & Lazaros Aresti & Georgios Florides, 2020. "Reviewing the Modeling Aspects and Practices of Shallow Geothermal Energy Systems," Energies, MDPI, vol. 13(16), pages 1-45, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:145:y:2018:i:c:p:721-733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.