IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp1004-1018.html

Thermodynamic equilibrium analysis of water-gas shift reaction using syngases-effect of CO2 and H2S contents

Author

Listed:
  • Chein, Rei-Yu
  • Yu, Ching-Tsung

Abstract

Thermodynamic equilibrium of water-gas shift reaction (WGSR) under various temperatures, pressures and steam-to-CO (S/C) ratios was analyzed by Gibbs free energy minimization method. Coal-derived syngases with various CO2 and H2S contents were used as the feedstock. Based on the obtained results, it was found that CH4 and carbon formations were enhanced when syngas CO2 content increases. Carbon-free WGSR can be resulted using high S/C ratio. However, CH4-free WGSR cannot be resulted even with low S/C ratios. From the H2O conversion and H2 yield variations, the temperature at which reverse WGSR occurs can be identified and found to decrease with the increase in S/C ratio. Solid CaO sorbent was employed for both CO2 and H2S removals in WGSR when sour syngas was used as the feedstock. It was found that WGSR performance was enhanced due to the CO2 and H2S removals by CaO. The H2S concentration can be decreased with decreased S/C ratio while increasing the reaction pressure was not favourable for H2 production and H2S removal in WGSR with CaO. Because WGSR performance enhancement due to CO2 and H2S removals occurred at high temperature, catalysts can be eliminated in sorption-enhanced WGSR.

Suggested Citation

  • Chein, Rei-Yu & Yu, Ching-Tsung, 2017. "Thermodynamic equilibrium analysis of water-gas shift reaction using syngases-effect of CO2 and H2S contents," Energy, Elsevier, vol. 141(C), pages 1004-1018.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:1004-1018
    DOI: 10.1016/j.energy.2017.09.133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217316547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.09.133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    2. Gradisher, Logan & Dutcher, Bryce & Fan, Maohong, 2015. "Catalytic hydrogen production from fossil fuels via the water gas shift reaction," Applied Energy, Elsevier, vol. 139(C), pages 335-349.
    3. Er-rbib, Hanaâ & Bouallou, Chakib, 2014. "Modeling and simulation of CO methanation process for renewable electricity storage," Energy, Elsevier, vol. 75(C), pages 81-88.
    4. Usman, Muhammad & Wan Daud, W.M.A. & Abbas, Hazzim F., 2015. "Dry reforming of methane: Influence of process parameters—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 710-744.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Guangxin & He, Beibei & Ma, Wenlin & Sun, Yifan, 2019. "Thermodynamic analysis based on simultaneous chemical and phase equilibrium for dehydration of glycerol with methanol," Energy, Elsevier, vol. 188(C).
    2. Wachter, Philipp & Gaber, Christian & Demuth, Martin & Hochenauer, Christoph, 2020. "Experimental investigation of tri-reforming on a stationary, recuperative TCR-reformer applied to an oxy-fuel combustion of natural gas, using a Ni-catalyst," Energy, Elsevier, vol. 212(C).
    3. Wu, Wei & Taipabu, Muhammad Ikhsan & Chang, Wei-Chen & Viswanathan, Karthickeyan & Xie, Yi-Lin & Kuo, Po-Chih, 2022. "Economic dispatch of torrefied biomass polygeneration systems considering power/SNG grid demands," Renewable Energy, Elsevier, vol. 196(C), pages 707-719.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wei-Hsin & Chen, Chia-Yang, 2020. "Water gas shift reaction for hydrogen production and carbon dioxide capture: A review," Applied Energy, Elsevier, vol. 258(C).
    2. Xu, Wenwu & Zhang, Jifu & Wu, Qiming & Wang, Yangyang & Zhao, Wenxuan & Zhu, Zhaoyou & Wang, Yinglong & Cui, Peizhe, 2024. "Energy, exergy and economic (3E) analyses of a novel DME-power polygeneration system with CO2 capture based on biomass gasification," Applied Energy, Elsevier, vol. 374(C).
    3. Katla, Daria & Bartela, Łukasz & Skorek-Osikowska, Anna, 2020. "Evaluation of electricity generation subsystem of power-to-gas-to-power unit using gas expander and heat recovery steam generator," Energy, Elsevier, vol. 212(C).
    4. Qin, Xulong & Xue, Zhiwei & Lim, Kang Hui & Han, Jiaheng & Li, Claudia & Wang, Xinyu & Meng, Xiuxia & Wang, Xiaobin & Shen, Yuesong & Yang, Naitao & Kawi, Sibudjing, 2025. "Highly selective production of green syngas by methanol decomposition over steam activated Ni/NaX zeolite catalyst," Energy, Elsevier, vol. 319(C).
    5. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    6. Michael Bampaou & Kyriakos Panopoulos & Panos Seferlis & Spyridon Voutetakis & Ismael Matino & Alice Petrucciani & Antonella Zaccara & Valentina Colla & Stefano Dettori & Teresa Annunziata Branca & Vi, 2021. "Integration of Renewable Hydrogen Production in Steelworks Off-Gases for the Synthesis of Methanol and Methane," Energies, MDPI, vol. 14(10), pages 1-24, May.
    7. Chung, Wei-Chieh & Chang, Moo-Been, 2016. "Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 13-31.
    8. Jung, Sungyup & Lee, Jechan & Moon, Deok Hyun & Kim, Ki-Hyun & Kwon, Eilhann E., 2021. "Upgrading biogas into syngas through dry reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Christoph Budny & Reinhard Madlener & Christoph Hilgers, 2013. "Economic Feasibility of Pipeline and Underground Reservoir Storage Options for Power-to-Gas Load Balancing," FCN Working Papers 18/2013, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    10. Colelli, Leonardo & Verdone, Nicola & Bassano, Claudia & Segneri, Valentina & Vilardi, Giorgio, 2024. "Optimization of Power to Gas system with cooled reactor for CO2 methanation: Start-up and shut-down tests with Ru-based and Ni-based kinetics," Energy, Elsevier, vol. 312(C).
    11. Al-Fatesh, Ahmed Sadeq & Hanan atia, & Ibrahim, Ahmed Aidid & Fakeeha, Anis Hamza & Singh, Sunit Kumar & Labhsetwar, Nitin K. & Shaikh, Hamid & Qasim, Shamsudeen O., 2019. "CO2 reforming of CH4: Effect of Gd as promoter for Ni supported over MCM-41 as catalyst," Renewable Energy, Elsevier, vol. 140(C), pages 658-667.
    12. Wu, Wei & Taipabu, Muhammad Ikhsan & Chang, Wei-Chen & Viswanathan, Karthickeyan & Xie, Yi-Lin & Kuo, Po-Chih, 2022. "Economic dispatch of torrefied biomass polygeneration systems considering power/SNG grid demands," Renewable Energy, Elsevier, vol. 196(C), pages 707-719.
    13. Zhang, Hao & Shuai, Yong & Lougou, Bachirou Guene & Jiang, Boshu & Wang, Fuqiang & Cheng, Ziming & Tan, Heping, 2020. "Effects of multilayer porous ceramics on thermochemical energy conversion and storage efficiency in solar dry reforming of methane reactor," Applied Energy, Elsevier, vol. 265(C).
    14. Yi, Qun & Gong, Min-Hui & Huang, Yi & Feng, Jie & Hao, Yan-Hong & Zhang, Ji-Long & Li, Wen-Ying, 2016. "Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance," Energy, Elsevier, vol. 112(C), pages 618-628.
    15. Baena-Moreno, Francisco M. & Sebastia-Saez, Daniel & Pastor-Pérez, Laura & Reina, Tomas Ramirez, 2021. "Analysis of the potential for biogas upgrading to syngas via catalytic reforming in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    16. Chen, Wei-Hsin & Calapatia, Andre Marvin A. & Ubando, Aristotle T., 2024. "Design of dual-channel Swiss-roll reactor for high-performance hydrogen production from ethanol steam reforming through waste heat valorization," Energy, Elsevier, vol. 306(C).
    17. Zhu, Tao & Fang, Wencheng & Chen, Xinrui & Liu, Bingxin & Feng, Hao & Zhang, Ying & Duan, Jingjing & Liu, Dong & Li, Qiang, 2025. "Zero-carbon-emission electrochemistry-thermochemistry-assembled full-spectrum solar fuel production," Applied Energy, Elsevier, vol. 386(C).
    18. Chen, Guanyi & Tao, Junyu & Liu, Caixia & Yan, Beibei & Li, Wanqing & Li, Xiangping, 2017. "Hydrogen production via acetic acid steam reforming: A critical review on catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1091-1098.
    19. Uchman, Wojciech & Skorek-Osikowska, Anna & Jurczyk, Michał & Węcel, Daniel, 2020. "The analysis of dynamic operation of power-to-SNG system with hydrogen generator powered with renewable energy, hydrogen storage and methanation unit," Energy, Elsevier, vol. 213(C).
    20. Yih-Hang Chen & David Shan-Hill Wong & Ya-Chien Chen & Chao-Min Chang & Hsuan Chang, 2019. "Design and Performance Comparison of Methanol Production Processes with Carbon Dioxide Utilization," Energies, MDPI, vol. 12(22), pages 1-18, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:1004-1018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.