IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v134y2017icp919-932.html
   My bibliography  Save this article

Multi-parameter optimization of double-loop fluidized bed solar reactor for thermochemical fuel production

Author

Listed:
  • Milanese, Marco
  • Colangelo, Gianpiero
  • Laforgia, Domenico
  • de Risi, Arturo

Abstract

In this paper, the design of a double-loop fluidized bed solar reactor, involving CeO2 nanoparticles and two gas streams of N2 and CO2, for efficient thermochemical fuel production, has been optimized in a six-dimensional parameter space by means of a multi-parameter optimization algorithm. The system under investigation is capable to develop a thermochemical two-step cycle, producing CO by means of the overall reaction CO2→CO+1/2O2. The use of nanoparticles as catalyst allows maximizing the performance of the reactor; actually, nanoparticles increase surface area of reaction, with respect to common catalysts and, at the same time, allow realizing the reactor as double-loop fluidized bed, which can operate without alternating flows of CO2 and inert sweep gas. A genetic algorithm coupled with a quasi-random Sobol design population has been used, to find the optimal configuration of the double-loop fluidized bed solar reactor.

Suggested Citation

  • Milanese, Marco & Colangelo, Gianpiero & Laforgia, Domenico & de Risi, Arturo, 2017. "Multi-parameter optimization of double-loop fluidized bed solar reactor for thermochemical fuel production," Energy, Elsevier, vol. 134(C), pages 919-932.
  • Handle: RePEc:eee:energy:v:134:y:2017:i:c:p:919-932
    DOI: 10.1016/j.energy.2017.06.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217310824
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.06.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agrafiotis, Christos & Roeb, Martin & Sattler, Christian, 2015. "A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 254-285.
    2. Lomascolo, Mauro & Colangelo, Gianpiero & Milanese, Marco & de Risi, Arturo, 2015. "Review of heat transfer in nanofluids: Conductive, convective and radiative experimental results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1182-1198.
    3. Lin, Meng & Haussener, Sophia, 2015. "Solar fuel processing efficiency for ceria redox cycling using alternative oxygen partial pressure reduction methods," Energy, Elsevier, vol. 88(C), pages 667-679.
    4. Seungdoo Park & John M. Vohs & Raymond J. Gorte, 2000. "Direct oxidation of hydrocarbons in a solid-oxide fuel cell," Nature, Nature, vol. 404(6775), pages 265-267, March.
    5. Colangelo, Gianpiero & Favale, Ernani & Miglietta, Paola & de Risi, Arturo & Milanese, Marco & Laforgia, Domenico, 2015. "Experimental test of an innovative high concentration nanofluid solar collector," Applied Energy, Elsevier, vol. 154(C), pages 874-881.
    6. Colangelo, Gianpiero & Favale, Ernani & de Risi, Arturo & Laforgia, Domenico, 2012. "Results of experimental investigations on the heat conductivity of nanofluids based on diathermic oil for high temperature applications," Applied Energy, Elsevier, vol. 97(C), pages 828-833.
    7. Colangelo, Gianpiero & Favale, Ernani & Miglietta, Paola & de Risi, Arturo, 2016. "Innovation in flat solar thermal collectors: A review of the last ten years experimental results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1141-1159.
    8. E. Perry Murray & T. Tsai & S. A. Barnett, 1999. "A direct-methane fuel cell with a ceria-based anode," Nature, Nature, vol. 400(6745), pages 649-651, August.
    9. Charvin, Patrice & Abanades, Stéphane & Flamant, Gilles & Lemort, Florent, 2007. "Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production," Energy, Elsevier, vol. 32(7), pages 1124-1133.
    10. Colangelo, Gianpiero & Favale, Ernani & de Risi, Arturo & Laforgia, Domenico, 2013. "A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids," Applied Energy, Elsevier, vol. 111(C), pages 80-93.
    11. de Risi, A. & Milanese, M. & Laforgia, D., 2013. "Modelling and optimization of transparent parabolic trough collector based on gas-phase nanofluids," Renewable Energy, Elsevier, vol. 58(C), pages 134-139.
    12. Ishihara, H. & Kaneko, H. & Hasegawa, N. & Tamaura, Y., 2008. "Two-step water-splitting at 1273–1623K using yttria-stabilized zirconia-iron oxide solid solution via co-precipitation and solid-state reaction," Energy, Elsevier, vol. 33(12), pages 1788-1793.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Ke & Liu, Xianglei & Jiang, Zhixing & Zheng, Hangbin & Song, Chao & Wang, Xinrui & Tian, Cheng & Dang, Chunzhuo & Sun, Nan & Xuan, Yimin, 2022. "Direct solar thermochemical CO2 splitting based on Ca- and Al- doped SmMnO3 perovskites: Ultrahigh CO yield within small temperature swing," Renewable Energy, Elsevier, vol. 194(C), pages 482-494.
    2. Marco Milanese & Gianpiero Colangelo & Arturo de Risi, 2023. "Progress in CO 2 Conversion Using Renewable Energy Sources," Energies, MDPI, vol. 16(5), pages 1-3, February.
    3. Marco Milanese & Gianpiero Colangelo & Arturo de Risi, 2021. "Development of a High-Flux Solar Simulator for Experimental Testing of High-Temperature Applications," Energies, MDPI, vol. 14(11), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianpiero Colangelo & Brenda Raho & Marco Milanese & Arturo de Risi, 2021. "Numerical Evaluation of a HVAC System Based on a High-Performance Heat Transfer Fluid," Energies, MDPI, vol. 14(11), pages 1-18, June.
    2. Colangelo, Gianpiero & Favale, Ernani & Miglietta, Paola & Milanese, Marco & de Risi, Arturo, 2016. "Thermal conductivity, viscosity and stability of Al2O3-diathermic oil nanofluids for solar energy systems," Energy, Elsevier, vol. 95(C), pages 124-136.
    3. Colangelo, Gianpiero & Favale, Ernani & Miglietta, Paola & de Risi, Arturo, 2016. "Innovation in flat solar thermal collectors: A review of the last ten years experimental results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1141-1159.
    4. Gómez-Villarejo, Roberto & Martín, Elisa I. & Navas, Javier & Sánchez-Coronilla, Antonio & Aguilar, Teresa & Gallardo, Juan Jesús & Alcántara, Rodrigo & De los Santos, Desiré & Carrillo-Berdugo, Iván , 2017. "Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: Nano-level insights," Applied Energy, Elsevier, vol. 194(C), pages 19-29.
    5. Tabish Alam & Nagesh Babu Balam & Kishor Sitaram Kulkarni & Md Irfanul Haque Siddiqui & Nishant Raj Kapoor & Chandan Swaroop Meena & Ashok Kumar & Raffaello Cozzolino, 2021. "Performance Augmentation of the Flat Plate Solar Thermal Collector: A Review," Energies, MDPI, vol. 14(19), pages 1-23, September.
    6. Lomascolo, Mauro & Colangelo, Gianpiero & Milanese, Marco & de Risi, Arturo, 2015. "Review of heat transfer in nanofluids: Conductive, convective and radiative experimental results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1182-1198.
    7. Yasinskiy, Andrey & Navas, Javier & Aguilar, Teresa & Alcántara, Rodrigo & Gallardo, Juan Jesús & Sánchez-Coronilla, Antonio & Martín, Elisa I. & De Los Santos, Desireé & Fernández-Lorenzo, Concha, 2018. "Dramatically enhanced thermal properties for TiO2-based nanofluids for being used as heat transfer fluids in concentrating solar power plants," Renewable Energy, Elsevier, vol. 119(C), pages 809-819.
    8. Micali, Francesco & Milanese, Marco & Colangelo, Gianpiero & de Risi, Arturo, 2018. "Experimental investigation on 4-strokes biodiesel engine cooling system based on nanofluid," Renewable Energy, Elsevier, vol. 125(C), pages 319-326.
    9. Marco Milanese & Francesco Micali & Gianpiero Colangelo & Arturo de Risi, 2022. "Experimental Evaluation of a Full-Scale HVAC System Working with Nanofluid," Energies, MDPI, vol. 15(8), pages 1-14, April.
    10. Colangelo, Gianpiero & Favale, Ernani & Miglietta, Paola & de Risi, Arturo & Milanese, Marco & Laforgia, Domenico, 2015. "Experimental test of an innovative high concentration nanofluid solar collector," Applied Energy, Elsevier, vol. 154(C), pages 874-881.
    11. Bahria, Sofiane & Amirat, Madjid & Hamidat, Abderrahmen & El Ganaoui, Mohammed & El Amine Slimani, Mohamed, 2016. "Parametric study of solar heating and cooling systems in different climates of Algeria – A comparison between conventional and high-energy-performance buildings," Energy, Elsevier, vol. 113(C), pages 521-535.
    12. Hussien, Ahmed A. & Abdullah, Mohd Z. & Al-Nimr, Moh’d A., 2016. "Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications," Applied Energy, Elsevier, vol. 164(C), pages 733-755.
    13. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    14. Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
    15. Ambreen, Tehmina & Kim, Man-Hoe, 2018. "Heat transfer and pressure drop correlations of nanofluids: A state of art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 564-583.
    16. Hussein, Ahmed Kadhim, 2016. "Applications of nanotechnology to improve the performance of solar collectors – Recent advances and overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 767-792.
    17. Chen, Meijie & He, Yurong & Zhu, Jiaqi & Wen, Dongsheng, 2016. "Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors," Applied Energy, Elsevier, vol. 181(C), pages 65-74.
    18. Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    19. M. M. Sarafraz & Alireza Dareh Baghi & Mohammad Reza Safaei & Arturo S. Leon & R. Ghomashchi & Marjan Goodarzi & Cheng-Xian Lin, 2019. "Assessment of Iron Oxide (III)–Therminol 66 Nanofluid as a Novel Working Fluid in a Convective Radiator Heating System for Buildings," Energies, MDPI, vol. 12(22), pages 1-13, November.
    20. Fan, Man & Liang, Hongbo & You, Shijun & Zhang, Huan & Zheng, Wandong & Xia, Junbao, 2018. "Heat transfer analysis of a new volumetric based receiver for parabolic trough solar collector," Energy, Elsevier, vol. 142(C), pages 920-931.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:134:y:2017:i:c:p:919-932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.