IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v122y2017icp492-504.html
   My bibliography  Save this article

Effects of air gap on insulation thickness and life cycle costs for different pipe diameters in pipeline

Author

Listed:
  • Daşdemir, Ali
  • Ertürk, Mustafa
  • Keçebaş, Ali
  • Demircan, Cihan

Abstract

This article reports the effects of air gap on insulation thickness and life cycle costs for different diameter steel pipes. The life cycle cost analysis based on heat degree days is used as a calculation method. Under climatic conditions in Afyonkarahisar, Turkey, using several fuel types and various insulation materials, the annual total costs, energy saving and payback period are evaluated for the insulation of different diameter pipes and also for use of an air gap. The results show that under all conditions, the lowest optimum insulation thickness was found for natural gas and XPS insulation material. Considering all variable parameters in the analysis, optimum insulation thickness, energy cost savings and payback periods for all air gap values varied within the intervals 0.3–25 cm, 20 to 423 $/m-yr and 0.8–2.2 years, respectively. In conclusion, in terms of the effect of air gap on insulation thickness and life cycle costs, for small diameter pipes air gap is effective, whereas for large diameter pipes the insulation thickness plays significant role.

Suggested Citation

  • Daşdemir, Ali & Ertürk, Mustafa & Keçebaş, Ali & Demircan, Cihan, 2017. "Effects of air gap on insulation thickness and life cycle costs for different pipe diameters in pipeline," Energy, Elsevier, vol. 122(C), pages 492-504.
  • Handle: RePEc:eee:energy:v:122:y:2017:i:c:p:492-504
    DOI: 10.1016/j.energy.2017.01.125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217301329
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.01.125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Öztürk, İ.T. & Karabay, H. & Bilgen, E., 2006. "Thermo-economic optimization of hot water piping systems: A comparison study," Energy, Elsevier, vol. 31(12), pages 2094-2107.
    2. Kaynakli, Omer, 2014. "Economic thermal insulation thickness for pipes and ducts: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 184-194.
    3. Büyükalaca, Orhan & Bulut, Hüsamettin & YIlmaz, Tuncay, 2001. "Analysis of variable-base heating and cooling degree-days for Turkey," Applied Energy, Elsevier, vol. 69(4), pages 269-283, August.
    4. Ertürk, Mustafa, 2016. "Optimum insulation thicknesses of pipes with respect to different insulation materials, fuels and climate zones in Turkey," Energy, Elsevier, vol. 113(C), pages 991-1003.
    5. Kaynakli, O., 2008. "A study on residential heating energy requirement and optimum insulation thickness," Renewable Energy, Elsevier, vol. 33(6), pages 1164-1172.
    6. Mahlia, T.M.I. & Iqbal, A., 2010. "Cost benefits analysis and emission reductions of optimum thickness and air gaps for selected insulation materials for building walls in Maldives," Energy, Elsevier, vol. 35(5), pages 2242-2250.
    7. Yildiz, Abdullah & Ersöz, Mustafa Ali, 2016. "The effect of wind speed on the economical optimum insulation thickness for HVAC duct applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1289-1300.
    8. Yildiz, Abdullah & Ali Ersöz, Mustafa, 2015. "Determination of the economical optimum insulation thickness for VRF (variable refrigerant flow) systems," Energy, Elsevier, vol. 89(C), pages 835-844.
    9. Li, Y. F. & Chow, W. K., 2005. "Optimum insulation-thickness for thermal and freezing protection," Applied Energy, Elsevier, vol. 80(1), pages 23-33, January.
    10. Sahin, Ahmet Z. & Kalyon, Muammer, 2005. "Maintaining uniform surface temperature along pipes by insulation," Energy, Elsevier, vol. 30(5), pages 637-647.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Mu-wei & Ao, Chu-chu & Wang, Xiao-rong, 2019. "Comprehensive method of natural gas pipeline efficiency evaluation based on energy and big data analysis," Energy, Elsevier, vol. 188(C).
    2. Yanhu, Mu & Guoyu, Li & Wei, Ma & Zhengmin, Song & Zhiwei, Zhou & Wang, Fei, 2020. "Rapid permafrost thaw induced by heat loss from a buried warm-oil pipeline and a new mitigation measure combining seasonal air-cooled embankment and pipe insulation," Energy, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ertürk, Mustafa, 2016. "Optimum insulation thicknesses of pipes with respect to different insulation materials, fuels and climate zones in Turkey," Energy, Elsevier, vol. 113(C), pages 991-1003.
    2. Kaynakli, Omer, 2014. "Economic thermal insulation thickness for pipes and ducts: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 184-194.
    3. Yildiz, Abdullah & Ali Ersöz, Mustafa, 2015. "Determination of the economical optimum insulation thickness for VRF (variable refrigerant flow) systems," Energy, Elsevier, vol. 89(C), pages 835-844.
    4. Yildiz, Abdullah & Ersöz, Mustafa Ali, 2016. "The effect of wind speed on the economical optimum insulation thickness for HVAC duct applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1289-1300.
    5. Ucar, Aynur & Balo, Figen, 2009. "Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey," Applied Energy, Elsevier, vol. 86(5), pages 730-736, May.
    6. Omer Kaynakli, 2011. "Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls," Energies, MDPI, vol. 4(6), pages 1-15, June.
    7. Küçüktopcu, Erdem & Cemek, Bilal, 2018. "A study on environmental impact of insulation thickness of poultry building walls," Energy, Elsevier, vol. 150(C), pages 583-590.
    8. Axaopoulos, Ioannis & Axaopoulos, Petros & Gelegenis, John, 2014. "Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind," Applied Energy, Elsevier, vol. 117(C), pages 167-175.
    9. Aditya, L. & Mahlia, T.M.I. & Rismanchi, B. & Ng, H.M. & Hasan, M.H. & Metselaar, H.S.C. & Muraza, Oki & Aditiya, H.B., 2017. "A review on insulation materials for energy conservation in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1352-1365.
    10. Ai, Wei & Wang, Liang & Lin, Xipeng & Zhang, Shuang & Bai, Yakai & Chen, Haisheng, 2023. "Mathematical and thermo-economic analysis of thermal insulation for thermal energy storage applications," Renewable Energy, Elsevier, vol. 213(C), pages 233-245.
    11. De Rosa, Mattia & Bianco, Vincenzo, 2023. "Optimal insulation layer for heated water pipes under technical, economic and carbon emission constraints," Energy, Elsevier, vol. 270(C).
    12. Čož, T. Duh & Kitanovski, A. & Poredoš, A., 2017. "Exergoeconomic optimization of a district cooling network," Energy, Elsevier, vol. 135(C), pages 342-351.
    13. Kruczek, Tadeusz, 2013. "Determination of annual heat losses from heat and steam pipeline networks and economic analysis of their thermomodernisation," Energy, Elsevier, vol. 62(C), pages 120-131.
    14. Lyu, Yuan-Li & Chow, Tin-Tai & Wang, Jin-Liang, 2018. "Numerical prediction of thermal performance of liquid-flow window in different climates with anti-freeze," Energy, Elsevier, vol. 157(C), pages 412-423.
    15. Dongjun Suh & Seongju Chang, 2012. "An Energy and Water Resource Demand Estimation Model for Multi-Family Housing Complexes in Korea," Energies, MDPI, vol. 5(11), pages 1-20, November.
    16. Sukjoon Oh & John F. Gardner, 2022. "Large Scale Energy Signature Analysis: Tools for Utility Managers and Planners," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    17. Papada, Lefkothea & Kaliampakos, Dimitris, 2016. "Developing the energy profile of mountainous areas," Energy, Elsevier, vol. 107(C), pages 205-214.
    18. D'Amico, A. & Ciulla, G. & Panno, D. & Ferrari, S., 2019. "Building energy demand assessment through heating degree days: The importance of a climatic dataset," Applied Energy, Elsevier, vol. 242(C), pages 1285-1306.
    19. Dou, Pengbo & Jia, Teng & Chu, Peng & Dai, Yanjun & Shou, Chunhui, 2022. "Performance analysis of no-insulation long distance thermal transportation system based on single-stage absorption-resorption cycle," Energy, Elsevier, vol. 243(C).
    20. Al-Sanea, Sami A. & Zedan, M.F., 2011. "Improving thermal performance of building walls by optimizing insulation layer distribution and thickness for same thermal mass," Applied Energy, Elsevier, vol. 88(9), pages 3113-3124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:122:y:2017:i:c:p:492-504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.