IDEAS home Printed from
   My bibliography  Save this article

Generation-scheduling-coupled battery sizing of stand-alone hybrid power systems


  • Shang, Ce
  • Srinivasan, Dipti
  • Reindl, Thomas


Properly sizing the battery energy storage system (BESS) of a stand-alone hybrid power system is an important step to guarantee its reliability and low cost. This study applies the technique of storage-integrated generation scheduling using metaheuristics to the BESS sizing, which helps to achieve the optimal scheduling scheme for each sizing plan, as its advantage over the rule-based sizing method. Such technique incorporates the storage dispatch with the scheduling of the dispatchable generators, and is formulated and solved as an optimisation with metaheuristics. Compared with existing approaches of storage-integrated generation scheduling, the metaheuristics-enabled approach proposed here relieves the modelling complexity of the optimisation, by using fewer decisions variables. Different degrees of solar and wind, as the renewable energy, are penetrated into the system, together with traditional diesel generators. The mixed-coded non-dominated sorting genetic algorithm II (NSGA-II) is employed as the main numeric tool, which shows the advantage of mixed-coded modelling over the real-coded modelling for the generation scheduling problem. The numeric evaluation of the system planning adopts the levelised cost of electricity (LCOE) as the economic indicator, to guide the real system planning and operation.

Suggested Citation

  • Shang, Ce & Srinivasan, Dipti & Reindl, Thomas, 2016. "Generation-scheduling-coupled battery sizing of stand-alone hybrid power systems," Energy, Elsevier, vol. 114(C), pages 671-682.
  • Handle: RePEc:eee:energy:v:114:y:2016:i:c:p:671-682
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Fares, Robert L. & Webber, Michael E., 2014. "A flexible model for economic operational management of grid battery energy storage," Energy, Elsevier, vol. 78(C), pages 768-776.
    2. Zhao, Pan & Dai, Yiping & Wang, Jiangfeng, 2014. "Design and thermodynamic analysis of a hybrid energy storage system based on A-CAES (adiabatic compressed air energy storage) and FESS (flywheel energy storage system) for wind power application," Energy, Elsevier, vol. 70(C), pages 674-684.
    3. Casares, F.J. & Lopez-Luque, R. & Posadillo, R. & Varo-Martinez, M., 2014. "Mathematical approach to the characterization of daily energy balance in autonomous photovoltaic solar systems," Energy, Elsevier, vol. 72(C), pages 393-404.
    4. Upadhyay, Subho & Sharma, M.P., 2016. "Selection of a suitable energy management strategy for a hybrid energy system in a remote rural area of India," Energy, Elsevier, vol. 94(C), pages 352-366.
    5. Mallol-Poyato, R. & Jiménez-Fernández, S. & Díaz-Villar, P. & Salcedo-Sanz, S., 2016. "Joint optimization of a Microgrid's structure design and its operation using a two-steps evolutionary algorithm," Energy, Elsevier, vol. 94(C), pages 775-785.
    6. Stoppato, Anna & Cavazzini, Giovanna & Ardizzon, Guido & Rossetti, Antonio, 2014. "A PSO (particle swarm optimization)-based model for the optimal management of a small PV(Photovoltaic)-pump hydro energy storage in a rural dry area," Energy, Elsevier, vol. 76(C), pages 168-174.
    7. Manfrida, Giampaolo & Secchi, Riccardo, 2014. "Seawater pumping as an electricity storage solution for photovoltaic energy systems," Energy, Elsevier, vol. 69(C), pages 470-484.
    8. Batas Bjelić, Ilija & Rajaković, Nikola, 2015. "Simulation-based optimization of sustainable national energy systems," Energy, Elsevier, vol. 91(C), pages 1087-1098.
    9. Codina Gironès, Victor & Moret, Stefano & Maréchal, François & Favrat, Daniel, 2015. "Strategic energy planning for large-scale energy systems: A modelling framework to aid decision-making," Energy, Elsevier, vol. 90(P1), pages 173-186.
    10. Jannelli, E. & Minutillo, M. & Lubrano Lavadera, A. & Falcucci, G., 2014. "A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology," Energy, Elsevier, vol. 78(C), pages 313-322.
    11. Dufo-López, Rodolfo & Bernal-Agustín, José L. & Yusta-Loyo, José M. & Domínguez-Navarro, José A. & Ramírez-Rosado, Ignacio J. & Lujano, Juan & Aso, Ismael, 2011. "Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV–wind–diesel systems with batteries storage," Applied Energy, Elsevier, vol. 88(11), pages 4033-4041.
    12. Chauhan, Anurag & Saini, R.P., 2016. "Techno-economic optimization based approach for energy management of a stand-alone integrated renewable energy system for remote areas of India," Energy, Elsevier, vol. 94(C), pages 138-156.
    13. Bruni, G. & Cordiner, S. & Mulone, V., 2014. "Domestic distributed power generation: Effect of sizing and energy management strategy on the environmental efficiency of a photovoltaic-battery-fuel cell system," Energy, Elsevier, vol. 77(C), pages 133-143.
    14. Glotić, Arnel & Glotić, Adnan & Kitak, Peter & Pihler, Jože & Tičar, Igor, 2014. "Optimization of hydro energy storage plants by using differential evolution algorithm," Energy, Elsevier, vol. 77(C), pages 97-107.
    15. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    16. Evins, Ralph, 2015. "Multi-level optimization of building design, energy system sizing and operation," Energy, Elsevier, vol. 90(P2), pages 1775-1789.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Amrollahi, Mohammad Hossein & Bathaee, Seyyed Mohammad Taghi, 2017. "Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response," Applied Energy, Elsevier, vol. 202(C), pages 66-77.
    2. Zhu, Jianyun & Chen, Li & Wang, Bin & Xia, Lijuan, 2018. "Optimal design of a hybrid electric propulsive system for an anchor handling tug supply vessel," Applied Energy, Elsevier, vol. 226(C), pages 423-436.
    3. Ping Liu & Zexiang Cai & Peng Xie & Xiaohua Li & Yongjun Zhang, 2019. "A Computationally Efficient Optimization Method for Battery Storage in Grid-connected Microgrids Based on a Power Exchanging Process," Energies, MDPI, Open Access Journal, vol. 12(8), pages 1-19, April.
    4. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    5. Baghaee, H.R. & Mirsalim, M. & Gharehpetian, G.B. & Talebi, H.A., 2016. "Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system," Energy, Elsevier, vol. 115(P1), pages 1022-1041.
    6. Mendoza-Vizcaino, Javier & Raza, Muhammad & Sumper, Andreas & Díaz-González, Francisco & Galceran-Arellano, Samuel, 2019. "Integral approach to energy planning and electric grid assessment in a renewable energy technology integration for a 50/50 target applied to a small island," Applied Energy, Elsevier, vol. 233, pages 524-543.
    7. Nojavan, Sayyad & Majidi, Majid & Esfetanaj, Naser Nourani, 2017. "An efficient cost-reliability optimization model for optimal siting and sizing of energy storage system in a microgrid in the presence of responsible load management," Energy, Elsevier, vol. 139(C), pages 89-97.
    8. Abdelkafi, Achraf & Masmoudi, Abdelkarim & Krichen, Lotfi, 2018. "Assisted power management of a stand-alone renewable multi-source system," Energy, Elsevier, vol. 145(C), pages 195-205.
    9. Shang, Ce & Srinivasan, Dipti & Reindl, Thomas, 2017. "Generation and storage scheduling of combined heat and power," Energy, Elsevier, vol. 124(C), pages 693-705.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:114:y:2016:i:c:p:671-682. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.