IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v109y2016icp650-663.html
   My bibliography  Save this article

Combustion characteristics and flame bifurcation in repetitive extinction-ignition dynamics for premixed hydrogen-air combustion in a heated micro channel

Author

Listed:
  • Alipoor, Alireza
  • Mazaheri, Kiumars

Abstract

The characteristics of repetitive extinction-ignition dynamics of flames are investigated numerically for hydrogen-air mixtures in a heated micro channel. A Low Mach number formulation, detailed chemical kinetics and different molecular diffusivities for each species are utilized in all simulations. In this regard, the effects of inlet velocity, equivalence ratio, and channel width on amplitude and frequency of the repetitive extinction-ignition phenomenon is studied. The results show that the frequency of repetitive extinction-ignition dynamics increases with increasing the inlet velocity, while its amplitude has an ascending-descending behavior. With increasing equivalence ratio from 0.5 to 1 and the channel width from 0.4 to 1, the amplitude of repetitive extinction-ignition dynamics increases and the frequency decreases. Regarding flame bifurcation, the details of the flow field show that the creation of recirculation zones at the wall vicinity causes the flame bifurcation. Investigating the role of chemical kinetics, it is found that the mass fractions of O2 and H2O increase inside the zone between the two flame fronts. As a result, the related reactions are activated and produce heavier species such as H2O, HO2 and H2O2. The heavier species absorb more heat, released from the combustion process, causing temperature reduction and lastly flame bifurcation.

Suggested Citation

  • Alipoor, Alireza & Mazaheri, Kiumars, 2016. "Combustion characteristics and flame bifurcation in repetitive extinction-ignition dynamics for premixed hydrogen-air combustion in a heated micro channel," Energy, Elsevier, vol. 109(C), pages 650-663.
  • Handle: RePEc:eee:energy:v:109:y:2016:i:c:p:650-663
    DOI: 10.1016/j.energy.2016.05.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216306521
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.05.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baigmohammadi, Mohammadreza & Tabejamaat, Sadegh & Zarvandi, Jalal, 2015. "Numerical study of the behavior of methane-hydrogen/air pre-mixed flame in a micro reactor equipped with catalytic segmented bluff body," Energy, Elsevier, vol. 85(C), pages 117-144.
    2. Wan, Jianlong & Fan, Aiwu & Yao, Hong & Liu, Wei, 2015. "Effect of pressure on the blow-off limits of premixed CH4/air flames in a mesoscale cavity-combustor," Energy, Elsevier, vol. 91(C), pages 102-109.
    3. Alipoor, Alireza & Mazaheri, Kiumars, 2014. "Studying the repetitive extinction-ignition dynamics for lean premixed hydrogen-air combustion in a heated microchannel," Energy, Elsevier, vol. 73(C), pages 367-379.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baigmohammadi, Mohammadreza & Tabejamaat, Sadegh & Faghani-Lamraski, Morteza, 2017. "Experimental study on the effects of mixture flow rate, equivalence ratio, oxygen enhancement, and geometrical parameters on propane-air premixed flame dynamics in non-adiabatic meso-scale reactors," Energy, Elsevier, vol. 121(C), pages 657-675.
    2. Wan, Jianlong & Fan, Aiwu & Yao, Hong & Liu, Wei, 2016. "Experimental investigation and numerical analysis on the blow-off limits of premixed CH4/air flames in a mesoscale bluff-body combustor," Energy, Elsevier, vol. 113(C), pages 193-203.
    3. Zuo, Wei & Zhang, Yuntian & Li, Qingqing & Li, Jing & He, Zhu, 2021. "Numerical investigations on hydrogen-fueled micro-cylindrical combustors with cavity for micro-thermophotovoltaic applications," Energy, Elsevier, vol. 223(C).
    4. Tang, Aikun & Cai, Tao & Deng, Jiang & Zhao, Dan & Huang, Qiuhan & Zhou, Chen, 2019. "Experimental study on flame structure transitions of premixed propane/air in micro-scale planar combustors," Energy, Elsevier, vol. 179(C), pages 558-570.
    5. Peng, Qingguo & Wu, Yifeng & E, Jiaqiang & Yang, Wenming & Xu, Hongpeng & Li, Zhenwei, 2019. "Combustion characteristics and thermal performance of premixed hydrogen-air in a two-rearward-step micro tube," Applied Energy, Elsevier, vol. 242(C), pages 424-438.
    6. Peng, Qingguo & Xie, Bo & Yang, Wenming & Tang, Shihao & Li, Zhenwei & Zhou, Peng & Luo, Ningkang, 2021. "Effects of porosity and multilayers of porous medium on the hydrogen-fueled combustion and micro-thermophotovoltaic," Renewable Energy, Elsevier, vol. 174(C), pages 391-402.
    7. Zuo, Wei & Li, Jing & Zhang, Yuntian & Li, Qingqing & He, Zhu, 2020. "Effects of multi-factors on comprehensive performance of a hydrogen-fueled micro-cylindrical combustor by combining grey relational analysis and analysis of variance," Energy, Elsevier, vol. 199(C).
    8. Ni, Siliang & Zhao, Dan & Sellier, Mathieu & Li, Junwei & Chen, Xinjian & Li, Xinyan & Cao, Feng & Li, Weixuan, 2021. "Thermal performances and emitter efficiency improvement studies on premixed micro-combustors with different geometric shapes for thermophotovoltaics applications," Energy, Elsevier, vol. 226(C).
    9. Mohr, Manuel & Klančišar, Marko & Schloen, Tim & Samec, Niko & Kokalj, Filip, 2018. "Numerical analysis of a non-steady state phenomenon during the ignition process in a condensing boiler," Energy, Elsevier, vol. 158(C), pages 623-631.
    10. E, Jiaqiang & Meng, Tian & Chen, Jingwei & Wu, Weiwei & Zhao, Xiaohuan & Zhang, Bin & Peng, Qingguo, 2021. "Effect analysis on performance enhancement of a hydrogen/air non-premixed micro combustor with sudden expansion and contraction structure," Energy, Elsevier, vol. 230(C).
    11. Alipoor, Alireza & Mazaheri, Kiumars, 2020. "Maps of flame dynamics for premixed lean hydrogen-air combustion in a heated microchannel," Energy, Elsevier, vol. 194(C).
    12. Wang, Shixuan & Li, Linhong & Xia, Yongfang & Fan, Aiwu & Yao, Hong, 2018. "Effect of a catalytic segment on flame stability in a micro combustor with controlled wall temperature profile," Energy, Elsevier, vol. 165(PA), pages 522-531.
    13. Xiang, Ying & Yuan, Zili & Wang, Shixuan & Fan, Aiwu, 2019. "Effects of flow rate and fuel/air ratio on propagation behaviors of diffusion H2/air flames in a micro-combustor," Energy, Elsevier, vol. 179(C), pages 315-322.
    14. Alipoor, Alireza & Saidi, Mohammad Hassan, 2017. "Numerical study of hydrogen-air combustion characteristics in a novel micro-thermophotovoltaic power generator," Applied Energy, Elsevier, vol. 199(C), pages 382-399.
    15. Li, Xinyan & Zhao, Dan & Yang, Xinglin, 2017. "Experimental and theoretical bifurcation study of a nonlinear standing-wave thermoacoustic system," Energy, Elsevier, vol. 135(C), pages 553-562.
    16. Wan, Jianlong & Zhao, Haibo, 2017. "Dynamics of premixed CH4/air flames in a micro combustor with a plate flame holder and preheating channels," Energy, Elsevier, vol. 139(C), pages 366-379.
    17. Cai, Tao & Tang, Aikun & Zhao, Dan & Zhou, Chen & Huang, Qiuhan, 2020. "Flame dynamics and stability of premixed methane/air in micro-planar quartz combustors," Energy, Elsevier, vol. 193(C).
    18. Rana, Uttam & Chakraborty, Suman & Som, S.K., 2017. "Prediction of flame speed and exergy analysis of premixed flame in a heat recirculating cylindrical micro combustor," Energy, Elsevier, vol. 126(C), pages 658-670.
    19. Zuo, Wei & E, Jiaqiang & Hu, Wenyu & Jin, Yu & Han, Dandan, 2017. "Numerical investigations on combustion characteristics of H2/air premixed combustion in a micro elliptical tube combustor," Energy, Elsevier, vol. 126(C), pages 1-12.
    20. Wan, Jianlong & Zhao, Haibo, 2020. "Effect of conjugate heat exchange of flame holder on laminar premixed flame stabilization in a meso-scale diverging combustor," Energy, Elsevier, vol. 198(C).
    21. Wan, Jianlong & Zhao, Haibo, 2018. "Thermal performance of solid walls in a mesoscale combustor with a plate flame holder and preheating channels," Energy, Elsevier, vol. 157(C), pages 448-459.
    22. Fan, Aiwu & Zhang, He & Wan, Jianlong, 2017. "Numerical investigation on flame blow-off limit of a novel microscale Swiss-roll combustor with a bluff-body," Energy, Elsevier, vol. 123(C), pages 252-259.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wan, Jianlong & Fan, Aiwu & Yao, Hong & Liu, Wei, 2016. "Experimental investigation and numerical analysis on the blow-off limits of premixed CH4/air flames in a mesoscale bluff-body combustor," Energy, Elsevier, vol. 113(C), pages 193-203.
    2. Wang, Shixuan & Li, Linhong & Xia, Yongfang & Fan, Aiwu & Yao, Hong, 2018. "Effect of a catalytic segment on flame stability in a micro combustor with controlled wall temperature profile," Energy, Elsevier, vol. 165(PA), pages 522-531.
    3. Wan, Jianlong & Fan, Aiwu & Yao, Hong & Liu, Wei, 2015. "Effect of pressure on the blow-off limits of premixed CH4/air flames in a mesoscale cavity-combustor," Energy, Elsevier, vol. 91(C), pages 102-109.
    4. Zuo, Wei & E, Jiaqiang & Hu, Wenyu & Jin, Yu & Han, Dandan, 2017. "Numerical investigations on combustion characteristics of H2/air premixed combustion in a micro elliptical tube combustor," Energy, Elsevier, vol. 126(C), pages 1-12.
    5. Fan, Aiwu & Zhang, He & Wan, Jianlong, 2017. "Numerical investigation on flame blow-off limit of a novel microscale Swiss-roll combustor with a bluff-body," Energy, Elsevier, vol. 123(C), pages 252-259.
    6. Zuo, Wei & E, Jiaqiang & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2017. "Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for micro-thermophotovoltaic system," Energy, Elsevier, vol. 122(C), pages 408-419.
    7. He, Ziqiang & Yan, Yunfei & Zhao, Ting & Zhang, Zhien & Mikulčić, Hrvoje, 2022. "Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    8. Wan, Jianlong & Zhao, Haibo, 2018. "Thermal performance of solid walls in a mesoscale combustor with a plate flame holder and preheating channels," Energy, Elsevier, vol. 157(C), pages 448-459.
    9. Yuan, Ye & Li, GuoXiu & Sun, ZuoYu & Li, HongMeng & Zhou, ZiHang, 2016. "Experimental study on the dynamical features of a partially premixed methane jet flame in coflow," Energy, Elsevier, vol. 111(C), pages 593-598.
    10. Tang, Aikun & Cai, Tao & Deng, Jiang & Zhao, Dan & Huang, Qiuhan & Zhou, Chen, 2019. "Experimental study on flame structure transitions of premixed propane/air in micro-scale planar combustors," Energy, Elsevier, vol. 179(C), pages 558-570.
    11. Ruirui Wang & Jingyu Ran & Xuesen Du & Juntian Niu & Wenjie Qi, 2016. "The Influence of Slight Protuberances in a Micro-Tube Reactor on Methane/Moist Air Catalytic Combustion," Energies, MDPI, vol. 9(6), pages 1-17, May.
    12. Yan, Yunfei & Liu, Ying & Li, Lixian & Cui, Yu & Zhang, Li & Yang, Zhongqing & Zhang, Zhien, 2019. "Numerical comparison of H2/air catalytic combustion characteristic of micro–combustors with a conventional, slotted or controllable slotted bluff body," Energy, Elsevier, vol. 189(C).
    13. Yan, Yunfei & Wu, Gange & Huang, Weipeng & Zhang, Li & Li, Lixian & Yang, Zhongqing, 2019. "Numerical comparison study of methane catalytic combustion characteristic between newly proposed opposed counter-flow micro-combustor and the conventional ones," Energy, Elsevier, vol. 170(C), pages 403-410.
    14. Wan, Jianlong & Zhao, Haibo, 2017. "Dynamics of premixed CH4/air flames in a micro combustor with a plate flame holder and preheating channels," Energy, Elsevier, vol. 139(C), pages 366-379.
    15. De Giorgi, Maria Grazia & Ficarella, Antonio & Sciolti, Aldebara & Pescini, Elisa & Campilongo, Stefano & Di Lecce, Giorgio, 2017. "Improvement of lean flame stability of inverse methane/air diffusion flame by using coaxial dielectric plasma discharge actuators," Energy, Elsevier, vol. 126(C), pages 689-706.
    16. Wan, Jianlong & Xu, Zuwei & Zhao, Haibo, 2018. "Methane/air premixed flame topology structure in a mesoscale combustor with a plate flame holder and preheating channels," Energy, Elsevier, vol. 165(PB), pages 802-811.
    17. Baigmohammadi, Mohammadreza & Tabejamaat, Sadegh & Faghani-Lamraski, Morteza, 2017. "Experimental study on the effects of mixture flow rate, equivalence ratio, oxygen enhancement, and geometrical parameters on propane-air premixed flame dynamics in non-adiabatic meso-scale reactors," Energy, Elsevier, vol. 121(C), pages 657-675.
    18. Maria Grazia De Giorgi & Aldebara Sciolti & Stefano Campilongo & Antonio Ficarella, 2017. "Flame Structure and Chemiluminescence Emissions of Inverse Diffusion Flames under Sinusoidally Driven Plasma Discharges," Energies, MDPI, vol. 10(3), pages 1-15, March.
    19. Yang, Xiao & Yang, Wenming & Dong, Shikui & Tan, Heping, 2020. "Flame stability analysis of premixed hydrogen/air mixtures in a swirl micro-combustor," Energy, Elsevier, vol. 209(C).
    20. Wang, Du & Ji, Changwei & Wang, Shuofeng & Yang, Jinxin & Tang, Chuanqi, 2019. "Experimental investigation on near wall ignited lean methane/hydrogen/air flame," Energy, Elsevier, vol. 168(C), pages 1094-1103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:109:y:2016:i:c:p:650-663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.