IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v101y2016icp211-217.html
   My bibliography  Save this article

Combustion study of a spark-ignition engine from pressure cycles

Author

Listed:
  • Djouadi, Amel
  • Bentahar, Fatiha

Abstract

This work presents investigations on combustion analysis of an experimental spark-ignition engine fueled specially by a mixture of 15% in volume of hydrogen and 85% in volume of methane with an equivalence ratio of 0.67 at 100% load, corresponding to optimum conditions for SI engine, using two models, zero dimensional model based on Rassweiller & Withrow theory and first law-single zone either at constant or variable specific heat ratio of gases requiring experimental data of engine cylinder pressures. The results show the happening in the combustion chamber to the burning of real fuel with respect to time since the mass burned fractions and the heat release rate are evaluated. It can be seen that the two models have not the same rate of mass combustion during combustion process since it happens at different crank angles. The dependence of γ(T) is visible for high pressure since the variation of temperature exists and is not negligible. A comparison was attained between the results that used γ(T) with that used constant specific heat. A program in Fortran 77 has been developed for the complete simulations of SI engine combustion. The results are consistent with those found in the literature.

Suggested Citation

  • Djouadi, Amel & Bentahar, Fatiha, 2016. "Combustion study of a spark-ignition engine from pressure cycles," Energy, Elsevier, vol. 101(C), pages 211-217.
  • Handle: RePEc:eee:energy:v:101:y:2016:i:c:p:211-217
    DOI: 10.1016/j.energy.2016.02.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421630055X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.02.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Catapano, F. & Di Iorio, S. & Magno, A. & Sementa, P. & Vaglieco, B.M., 2015. "A comprehensive analysis of the effect of ethanol, methane and methane-hydrogen blend on the combustion process in a PFI (port fuel injection) engine," Energy, Elsevier, vol. 88(C), pages 101-110.
    2. Bougrine, S. & Richard, S. & Michel, J.-B. & Veynante, D., 2014. "Simulation of CO and NO emissions in a SI engine using a 0D coherent flame model coupled with a tabulated chemistry approach," Applied Energy, Elsevier, vol. 113(C), pages 1199-1215.
    3. Shehata, M.S., 2010. "Cylinder pressure, performance parameters, heat release, specific heats ratio and duration of combustion for spark ignition engine," Energy, Elsevier, vol. 35(12), pages 4710-4725.
    4. Paul, Abhishek & Panua, Raj Sekhar & Debroy, Durbadal & Bose, Probir Kumar, 2015. "An experimental study of the performance, combustion and emission characteristics of a CI engine under dual fuel mode using CNG and oxygenated pilot fuel blends," Energy, Elsevier, vol. 86(C), pages 560-573.
    5. Vudumu, Shravan K. & Koylu, Umit O., 2011. "Computational modeling, validation, and utilization for predicting the performance, combustion and emission characteristics of hydrogen IC engines," Energy, Elsevier, vol. 36(1), pages 647-655.
    6. Park, Cheolwoong & Kim, Changgi & Choi, Young & Lee, Janghee, 2013. "Operating strategy for exhaust gas reduction and performance improvement in a heavy-duty hydrogen-natural gas blend engine," Energy, Elsevier, vol. 50(C), pages 262-269.
    7. Zhou, J.H. & Cheung, C.S. & Zhao, W.Z. & Leung, C.W., 2016. "Diesel–hydrogen dual-fuel combustion and its impact on unregulated gaseous emissions and particulate emissions under different engine loads and engine speeds," Energy, Elsevier, vol. 94(C), pages 110-123.
    8. Abedin, M.J. & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Rahman, S.M. Ashrafur & Masum, B.M., 2013. "Energy balance of internal combustion engines using alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 20-33.
    9. Mancaruso, Ezio & Sequino, Luigi & Vaglieco, Bianca Maria, 2013. "GTL (Gas To Liquid) and RME (Rapeseed Methyl Ester) combustion analysis in a transparent CI (compression ignition) engine by means of IR (infrared) digital imaging," Energy, Elsevier, vol. 58(C), pages 185-191.
    10. Bysveen, Marie, 2007. "Engine characteristics of emissions and performance using mixtures of natural gas and hydrogen," Energy, Elsevier, vol. 32(4), pages 482-489.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Deng & Wang, Hechun & Wang, Binbin & Shi, Mingwei & Duan, Baoyin & Wang, Yinyan & Yang, Chuanlei, 2022. "Calibration of 0-D combustion model applied to dual-fuel engine," Energy, Elsevier, vol. 261(PB).
    2. Naderi, Alireza & Qasemian, Ali & Shojaeefard, Mohammad Hasan & Samiezadeh, Saman & Younesi, Mostafa & Sohani, Ali & Hoseinzadeh, Siamak, 2021. "A smart load-speed sensitive cooling map to have a high- performance thermal management system in an internal combustion engine," Energy, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Cong, Xiaoyu & Liu, Xiaolong, 2016. "Effect of CO2 dilution on combustion and emissions characteristics of the hydrogen-enriched gasoline engine," Energy, Elsevier, vol. 96(C), pages 118-126.
    2. Hussein A. Mahmood & Nor Mariah. Adam & B. B. Sahari & S. U. Masuri, 2017. "New Design of a CNG-H 2 -AIR Mixer for Internal Combustion Engines: An Experimental and Numerical Study," Energies, MDPI, vol. 10(9), pages 1-27, September.
    3. Wang, Shuofeng & Ji, Changwei & Zhang, Jian & Zhang, Bo, 2011. "Comparison of the performance of a spark-ignited gasoline engine blended with hydrogen and hydrogen–oxygen mixtures," Energy, Elsevier, vol. 36(10), pages 5832-5837.
    4. Park, Cheolwoong & Kim, Changgi & Choi, Young & Lee, Janghee, 2013. "Operating strategy for exhaust gas reduction and performance improvement in a heavy-duty hydrogen-natural gas blend engine," Energy, Elsevier, vol. 50(C), pages 262-269.
    5. Prasad, Rajesh Kumar & Agarwal, Avinash Kumar, 2021. "Development and comparative experimental investigations of laser plasma and spark plasma ignited hydrogen enriched compressed natural gas fueled engine," Energy, Elsevier, vol. 216(C).
    6. Jun Cong Ge & Nag Jung Choi, 2020. "Soot Particle Size Distribution, Regulated and Unregulated Emissions of a Diesel Engine Fueled with Palm Oil Biodiesel Blends," Energies, MDPI, vol. 13(21), pages 1-16, November.
    7. Antonio Lecuona & José I. Nogueira & Antonio Famiglietti, 2021. "Open Dual Cycle with Composition Change and Limited Pressure for Prediction of Miller Engines Performance and Its Turbine Temperature," Energies, MDPI, vol. 14(10), pages 1-25, May.
    8. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    9. Deb, Madhujit & Debbarma, Bishop & Majumder, Arindam & Banerjee, Rahul, 2016. "Performance –emission optimization of a diesel-hydrogen dual fuel operation: A NSGA II coupled TOPSIS MADM approach," Energy, Elsevier, vol. 117(P1), pages 281-290.
    10. Zhang, Wei & Chang, Shaoyue & Wu, Wei & Dong, Lihui & Chen, Zhaohui & Chen, Guisheng, 2019. "A diesel/natural gas dual fuel mechanism constructed to reveal combustion and emission characteristics," Energy, Elsevier, vol. 179(C), pages 59-75.
    11. Sun, Zuo-Yu & Li, Guo-Xiu, 2016. "Propagation characteristics of laminar spherical flames within homogeneous hydrogen-air mixtures," Energy, Elsevier, vol. 116(P1), pages 116-127.
    12. Hosseini, S. Mohammad & Ahmadi, Rouhollah, 2017. "Performance and emissions characteristics in the combustion of co-fuel diesel-hydrogen in a heavy duty engine," Applied Energy, Elsevier, vol. 205(C), pages 911-925.
    13. Shang, Zhen & Yu, Xiumin & Ren, Lei & Wei, Guowu & Li, Guanting & Li, Decheng & Li, Yinan, 2020. "Comparative study on effects of injection mode on combustion and emission characteristics of a combined injection n-butanol/gasoline SI engine with hydrogen direct injection," Energy, Elsevier, vol. 213(C).
    14. Luigi De Simio & Sabato Iannaccone & Massimo Masi & Paolo Gobbato, 2022. "Experimental Study and Optimisation of a Non-Conventional Ignition System for Reciprocating Engines Operation with Hydrogen–Methane Blends, Syngas, and Biogas," Energies, MDPI, vol. 15(21), pages 1-21, November.
    15. Awad, Omar I. & Ali, Obed M. & Mamat, Rizalman & Abdullah, A.A. & Najafi, G. & Kamarulzaman, M.K. & Yusri, I.M. & Noor, M.M., 2017. "Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1232-1242.
    16. EL-Seesy, Ahmed I. & Hassan, Hamdy, 2019. "Investigation of the effect of adding graphene oxide, graphene nanoplatelet, and multiwalled carbon nanotube additives with n-butanol-Jatropha methyl ester on a diesel engine performance," Renewable Energy, Elsevier, vol. 132(C), pages 558-574.
    17. Yang, Zhenzhong & Zhang, Fu & Wang, Lijun & Wang, Kaixin & Zhang, Donghui, 2018. "Effects of injection mode on the mixture formation and combustion performance of the hydrogen internal combustion engine," Energy, Elsevier, vol. 147(C), pages 715-728.
    18. Serrano, J. & Jiménez-Espadafor, F.J. & López, A., 2019. "Analysis of the effect of the hydrogen as main fuel on the performance of a modified compression ignition engine with water injection," Energy, Elsevier, vol. 173(C), pages 911-925.
    19. de Santoli, Livio & Lo Basso, Gianluigi & Bruschi, Daniele, 2013. "Energy characterization of CHP (combined heat and power) fuelled with hydrogen enriched natural gas blends," Energy, Elsevier, vol. 60(C), pages 13-22.
    20. Muhssen, Hassan Sadah & Masuri, Siti Ujila & Sahari, Barkawi Bin & Hairuddin, Abdul Aziz, 2021. "Design improvement of compressed natural gas (CNG)-Air mixer for diesel dual-fuel engines using computational fluid dynamics," Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:101:y:2016:i:c:p:211-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.