IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v73y2014icp701-705.html
   My bibliography  Save this article

Quantifying the consensus on anthropogenic global warming in the literature: A re-analysis

Author

Listed:
  • Tol, Richard S.J.

Abstract

A claim has been that 97% of the scientific literature endorses anthropogenic climate change (Cook et al., 2013. Environ. Res. Lett. 8, 024024). This claim, frequently repeated in debates about climate policy, does not stand. A trend in composition is mistaken for a trend in endorsement. Reported results are inconsistent and biased. The sample is not representative and contains many irrelevant papers. Overall, data quality is low. Cook׳s validation test shows that the data are invalid. Data disclosure is incomplete so that key results cannot be reproduced or tested.

Suggested Citation

  • Tol, Richard S.J., 2014. "Quantifying the consensus on anthropogenic global warming in the literature: A re-analysis," Energy Policy, Elsevier, vol. 73(C), pages 701-705.
  • Handle: RePEc:eee:enepol:v:73:y:2014:i:c:p:701-705
    DOI: 10.1016/j.enpol.2014.04.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421514002821
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Annan & J. Hargreaves, 2011. "On the generation and interpretation of probabilistic estimates of climate sensitivity," Climatic Change, Springer, vol. 104(3), pages 423-436, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Havranek, Tomas & Irsova, Zuzana & Janda, Karel & Zilberman, David, 2015. "Selective reporting and the social cost of carbon," Energy Economics, Elsevier, vol. 51(C), pages 394-406.
    2. Aliakbari, Elmira & McKitrick, Ross, 2018. "Information aggregation in a prediction market for climate outcomes," Energy Economics, Elsevier, vol. 74(C), pages 97-106.
    3. Federico Pasquaré Mariotto & Corrado Venturini, 2017. "2014, The “year without a summer” in Italy: news media coverage and implications for the climate change debate," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(4), pages 1367-1380, August.
    4. Richard S.J. Tol, 2019. "The elusive consensus on climate change," Working Paper Series 0319, Department of Economics, University of Sussex Business School.
    5. Junichi Hirose & Koji Kotani & Yoshinori Nakagawa, 2020. "Is climate change induced by humans? The impact of the gap in perceptions on cooperation," Working Papers SDES-2020-2, Kochi University of Technology, School of Economics and Management, revised May 2020.
    6. Dilger, Alexander, 2020. "Wirtschaftsethische Überlegungen zum Klimawandel," Discussion Papers of the Institute for Organisational Economics 5/2020, University of Münster, Institute for Organisational Economics.
    7. Junichi Hirose & Koji Kotani & Yoshinori Nakagawa, 2019. "Human-induced or nature-induced climate change? Impact of the perception gap on the cooperation," Working Papers SDES-2019-15, Kochi University of Technology, School of Economics and Management, revised Dec 2019.
    8. Wang, Zhan & Deng, Xiangzheng & Bai, Yuping & Chen, Jiancheng & Zheng, Wentang, 2016. "Land use structure and emission intensity at regional scale: A case study at the middle reach of the Heihe River basin," Applied Energy, Elsevier, vol. 183(C), pages 1581-1593.
    9. Hall, C. Michael & Amelung, Bas & Cohen, Scott & Eijgelaar, Eke & Gössling, Stefan & Higham, James & Leemans, Rik & Peeters, Paul & Ram, Yael & Scott, Daniel & Aall, Carlo & Abegg, Bruno & Araña, Jorg, 2015. "Denying bogus skepticism in climate change and tourism research," Tourism Management, Elsevier, vol. 47(C), pages 352-356.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard S. J. Tol & In Chang Hwang & Frédéric Reynès, 2012. "The Effect of Learning on Climate Policy under Fat-tailed Uncertainty," Working Paper Series 5312, Department of Economics, University of Sussex Business School.
    2. Richard Tol, 2015. "Bootstraps for Meta-Analysis with an Application to the Impact of Climate Change," Computational Economics, Springer;Society for Computational Economics, vol. 46(2), pages 287-303, August.
    3. Loehle, Craig, 2014. "A minimal model for estimating climate sensitivity," Ecological Modelling, Elsevier, vol. 276(C), pages 80-84.
    4. Samuel Jovan Okullo, 2020. "Determining the Social Cost of Carbon: Under Damage and Climate Sensitivity Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(1), pages 79-103, January.
    5. Martha Butler & Patrick Reed & Karen Fisher-Vanden & Klaus Keller & Thorsten Wagener, 2014. "Inaction and climate stabilization uncertainties lead to severe economic risks," Climatic Change, Springer, vol. 127(3), pages 463-474, December.
    6. Hwang, In Chang & Reynès, Frédéric & Tol, Richard S.J., 2017. "The effect of learning on climate policy under fat-tailed risk," Resource and Energy Economics, Elsevier, vol. 48(C), pages 1-18.
    7. Stephan Lewandowsky & James Risbey & Michael Smithson & Ben Newell & John Hunter, 2014. "Scientific uncertainty and climate change: Part I. Uncertainty and unabated emissions," Climatic Change, Springer, vol. 124(1), pages 21-37, May.
    8. Yew-Kwang Ng, 2016. "The Importance of Global Extinction in Climate Change Policy," Global Policy, London School of Economics and Political Science, vol. 7(3), pages 315-322, September.
    9. Ward, James D. & Mohr, Steve H. & Myers, Baden R. & Nel, Willem P., 2012. "High estimates of supply constrained emissions scenarios for long-term climate risk assessment," Energy Policy, Elsevier, vol. 51(C), pages 598-604.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:73:y:2014:i:c:p:701-705. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.