IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i1p383-391.html
   My bibliography  Save this article

Solar water heaters in China: A new day dawning

Author

Listed:
  • Han, Jingyi
  • Mol, Arthur P.J.
  • Lu, Yonglong

Abstract

Solar thermal utilization, especially the application of solar water heater technology, has developed rapidly in China in recent decades. Manufacturing and marketing developments have been especially strong in provinces such as Zhejiang, Shandong and Jiangsu. This paper takes Zhejiang, a relatively affluent province, as a case study area to assess the performance of solar water heater utilization in China. The study will focus on institutional setting, economic and technological performance, energy performance, and environmental and social impact. Results show that China has greatly increased solar water heater utilization, which has brought China great economic, environmental and social benefits. However, China is confronted with malfeasant market competition, technical flaws in solar water heater products and social conflict concerning solar water heater installation. For further development of the solar water heater, China should clarify the compulsory installation policy and include solar water heaters into the current "Home Appliances Going to the Countryside" project; most of the widely used vacuum tube products should be replaced by flat plate products, and the technology improvement should focus on anti-freezing and water saving; the resources of solar water heater market should be consolidated and most of the OEM manufacturers should evolve to ODM and OBM enterprises.

Suggested Citation

  • Han, Jingyi & Mol, Arthur P.J. & Lu, Yonglong, 2010. "Solar water heaters in China: A new day dawning," Energy Policy, Elsevier, vol. 38(1), pages 383-391, January.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:1:p:383-391
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00712-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, M & Wang, R.Z & Xu, Y.X & Wu, J.Y & Dieng, A.O, 2002. "Experimental study on dynamic performance analysis of a flat-plate solar solid-adsorption refrigeration for ice maker," Renewable Energy, Elsevier, vol. 27(2), pages 211-221.
    2. Xiao, Chaofeng & Luo, Huilong & Tang, Runsheng & Zhong, Hao, 2004. "Solar thermal utilization in China," Renewable Energy, Elsevier, vol. 29(9), pages 1549-1556.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Pao-Long & Ho, Shu-Ping & Hsu, Chiung-Wen, 2013. "Dynamic simulation of government subsidy policy effects on solar water heaters installation in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 385-396.
    2. Qiang Wang & Jinfu Wang & Runsheng Tang, 2016. "Design and Optical Performance of Compound Parabolic Solar Concentrators with Evacuated Tube as Receivers," Energies, MDPI, vol. 9(10), pages 1-16, October.
    3. Li, M. & Huang, H.B. & Wang, R.Z. & Wang, L.L. & Cai, W.D. & Yang, W.M., 2004. "Experimental study on adsorbent of activated carbon with refrigerant of methanol and ethanol for solar ice maker," Renewable Energy, Elsevier, vol. 29(15), pages 2235-2244.
    4. Li, Jiarong & Li, Xiangdong & Wang, Yong & Tu, Jiyuan, 2020. "A theoretical model of natural circulation flow and heat transfer within horizontal evacuated tube considering the secondary flow," Renewable Energy, Elsevier, vol. 147(P1), pages 630-638.
    5. Fang, Yiping & Wei, Yanqiang, 2013. "Climate change adaptation on the Qinghai–Tibetan Plateau: The importance of solar energy utilization for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 508-518.
    6. Stitou, Driss & Mazet, Nathalie & Mauran, Sylvain, 2012. "Experimental investigation of a solid/gas thermochemical storage process for solar air-conditioning," Energy, Elsevier, vol. 41(1), pages 261-270.
    7. Islam, Md. Parvez & Morimoto, Tetsuo, 2018. "Advances in low to medium temperature non-concentrating solar thermal technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2066-2093.
    8. Kumar, Anil & Kim, Man-Hoe, 2016. "Thermohydraulic performance of rectangular ducts with different multiple V-rib roughness shapes: A comprehensive review and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 635-652.
    9. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    10. Moreno-Quintanar, G. & Rivera, W. & Best, R., 2012. "Comparison of the experimental evaluation of a solar intermittent refrigeration system for ice production operating with the mixtures NH3/LiNO3 and NH3/LiNO3/H2O," Renewable Energy, Elsevier, vol. 38(1), pages 62-68.
    11. Li, C. & Wang, R.Z. & Wang, L.W. & Li, T.X. & Chen, Y., 2013. "Experimental study on an adsorption icemaker driven by parabolic trough solar collector," Renewable Energy, Elsevier, vol. 57(C), pages 223-233.
    12. Allouhi, A. & Kousksou, T. & Jamil, A. & El Rhafiki, T. & Mourad, Y. & Zeraouli, Y., 2015. "Optimal working pairs for solar adsorption cooling applications," Energy, Elsevier, vol. 79(C), pages 235-247.
    13. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K., 2015. "A review on adsorption cooling systems with silica gel and carbon as adsorbents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 123-134.
    14. Zhao, Yongling & Hu, Eric & Blazewicz, Antoni, 2012. "Dynamic modelling of an activated carbon–methanol adsorption refrigeration tube with considerations of interfacial convection and transient pressure process," Applied Energy, Elsevier, vol. 95(C), pages 276-284.
    15. Muhammad Awais Gulzar & Haroon Asghar & Jinsoo Hwang & Waseem Hassan, 2020. "China’s Pathway towards Solar Energy Utilization: Transition to a Low-Carbon Economy," IJERPH, MDPI, vol. 17(12), pages 1-11, June.
    16. Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.
    17. Qian, Suxin & Gluesenkamp, Kyle & Hwang, Yunho & Radermacher, Reinhard & Chun, Ho-Hwan, 2013. "Cyclic steady state performance of adsorption chiller with low regeneration temperature zeolite," Energy, Elsevier, vol. 60(C), pages 517-526.
    18. Guihua Li & Jingjing Tang & Runsheng Tang, 2019. "Performance and Design Optimization of a One-Axis Multiple Positions Sun-Tracked V-trough for Photovoltaic Applications," Energies, MDPI, vol. 12(6), pages 1-23, March.
    19. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    20. Sabiha, M.A. & Saidur, R. & Mekhilef, Saad & Mahian, Omid, 2015. "Progress and latest developments of evacuated tube solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1038-1054.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:1:p:383-391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.