IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v17y2010i4p722-743.html
   My bibliography  Save this article

Assessing the compensation for volatility risk implicit in interest rate derivatives

Author

Listed:
  • Fornari, Fabio

Abstract

We use the risk neutral volatilities which market participants use to price dollar, euro and pound swaptions to the aim of assessing the size and the sign of the daily compensation for interest rate volatility risk between October 1998 and August 2006. The measurement of the unobservable volatility risk premium rests on a simple garch model, which generates the parameters of the volatility process under the physical measure and produces paths of future volatilities, whose averages represent the realized volatility forecasts. Results show that interest rate volatility has embodied a large -- negative -- compensation for volatility risk, in line with other studies focusing on different asset classes. We also document that the volatility risk premium has exhibited a term structure across the analyzed maturity spectrum and that it has changed through time, but much less than risk neutral volatilities. Compensation for volatility risk is positively related to risk neutral volatility, although the relation is not completely linear, and it is influenced, as expected, by the level of the short term rate and its realized volatility. Also a small but robust number of macroeconomic surprises affect compensation for volatility risk, with macroeconomic uncertainty in one country spilling over to other currencies. Estimates of the risk aversion coefficient computed over the same sample as the volatility risk premium suggest that (minus) the volatility risk premium can be almost directly read as risk aversion.

Suggested Citation

  • Fornari, Fabio, 2010. "Assessing the compensation for volatility risk implicit in interest rate derivatives," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 722-743, September.
  • Handle: RePEc:eee:empfin:v:17:y:2010:i:4:p:722-743
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927-5398(10)00017-4
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Britten-Jones & Anthony Neuberger, 2000. "Option Prices, Implied Price Processes, and Stochastic Volatility," Journal of Finance, American Finance Association, vol. 55(2), pages 839-866, April.
    2. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    3. Alessandro Beber & Michael W. Brandt, 2009. "Resolving Macroeconomic Uncertainty in Stock and Bond Markets," Review of Finance, European Finance Association, vol. 13(1), pages 1-45.
    4. Fornari, Fabio & Mele, Antonio, 2006. "Approximating volatility diffusions with CEV-ARCH models," Journal of Economic Dynamics and Control, Elsevier, vol. 30(6), pages 931-966, June.
    5. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
    6. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, pages 83-106.
    7. Bollerslev, Tim & Gibson, Michael & Zhou, Hao, 2011. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Journal of Econometrics, Elsevier, vol. 160(1), pages 235-245, January.
    8. Fornari, Fabio & Mele, Antonio, 2001. "Recovering the probability density function of asset prices using garch as diffusion approximations," Journal of Empirical Finance, Elsevier, pages 83-110.
    9. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    10. Roberto Rigobon & Brian Sack, 2008. "Noisy Macroeconomic Announcements, Monetary Policy, and Asset Prices," NBER Chapters,in: Asset Prices and Monetary Policy, pages 335-370 National Bureau of Economic Research, Inc.
    11. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2002. "Parametric and Nonparametric Volatility Measurement," Center for Financial Institutions Working Papers 02-27, Wharton School Center for Financial Institutions, University of Pennsylvania.
    12. Bjørn Eraker, 2004. "Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices," Journal of Finance, American Finance Association, vol. 59(3), pages 1367-1404, June.
    13. Nelson, Daniel B., 1992. "Filtering and forecasting with misspecified ARCH models I : Getting the right variance with the wrong model," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 61-90.
    14. Gurdip Bakshi & Dilip Madan, 2006. "A Theory of Volatility Spreads," Management Science, INFORMS, pages 1945-1956.
    15. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    16. Gurdip Bakshi & Nikunj Kapadia, 2003. "Delta-Hedged Gains and the Negative Market Volatility Risk Premium," Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 527-566.
    17. Fabio Fornari & Antonio Mele, 1997. "Weak convergence and distributional assumptions for a general class of nonliner arch models," Econometric Reviews, Taylor & Francis Journals, vol. 16(2), pages 205-227.
    18. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    19. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    20. Chernov, Mikhail, 2007. "On the Role of Risk Premia in Volatility Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 411-426, October.
    21. Guo, Dajiang, 1998. "The Risk Premium of Volatility Implicit in Currency Options," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 498-507, October.
    22. Giovanni Barone-Adesi & Robert F. Engle & Loriano Mancini, 2008. "A GARCH Option Pricing Model with Filtered Historical Simulation," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1223-1258, May.
    23. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duyvesteyn, Johan & de Zwart, Gerben, 2015. "Riding the swaption curve," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 57-75.
    2. Mele, Antonio & Obayashi, Yoshiki & Shalen, Catherine, 2015. "Rate fears gauges and the dynamics of fixed income and equity volatilities," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 256-265.
    3. Byun, Suk Joon & Chang, Ki Cheon, 2015. "Volatility risk premium in the interest rate market: Evidence from delta-hedged gains on USD interest rate swaps," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 88-102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:17:y:2010:i:4:p:722-743. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.