IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v325y2025i1p100-117.html
   My bibliography  Save this article

A logic-based Benders decomposition approach for a fuel delivery problem with time windows, unsplit compartments, and split deliveries

Author

Listed:
  • Melo, Rafael A.
  • Ribeiro, Celso C.
  • Urrutia, Sebastián
  • Vansteenwegen, Pieter

Abstract

We consider a single-period fuel delivery problem in which a distribution company has to transport multiple types of fuel from a depot to a set of service stations using a heterogeneous set of multi-compartment vehicles. Among other characteristics, the problem includes time windows, a limit on the duration of each route, unsplit compartments, and split deliveries. We propose two mixed integer programming (MIP) formulations and a logic-based Benders decomposition approach. The first formulation is an arc-based model while the second is based on the possible trips. The logic-based Benders decomposition follows a trip-based principle and breaks down the problem into a generalized assignment master problem and a subproblem responsible for identifying violated feasibility cuts implicated by the time-related constraints. It takes advantage of the problem-specific characteristics that allow efficiently solving the resulting subproblems. The logic-based Benders decomposition also serves as a heuristic, which works by limiting the number of trips generated throughout the process. Symmetry breaking constraints and preprocessing procedures are also proposed to help solving the formulations. The computational experiments using synthetic instances show that the logic-based Benders decomposition outperforms the other formulations and is very effective in solving the considered benchmark instances. It solved to optimality instances with up to 20 customers. The MIP heuristic obtained solutions within 7.2% of the optimal cost for all but one of the tested instances with up to 25 customers. Furthermore, it proved to be a viable approach for medium-sized instances where the exact logic-based Benders decomposition encountered difficulties.

Suggested Citation

  • Melo, Rafael A. & Ribeiro, Celso C. & Urrutia, Sebastián & Vansteenwegen, Pieter, 2025. "A logic-based Benders decomposition approach for a fuel delivery problem with time windows, unsplit compartments, and split deliveries," European Journal of Operational Research, Elsevier, vol. 325(1), pages 100-117.
  • Handle: RePEc:eee:ejores:v:325:y:2025:i:1:p:100-117
    DOI: 10.1016/j.ejor.2025.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221725001833
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2025.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ruiz, Ruben & Maroto, Concepcion & Alcaraz, Javier, 2004. "A decision support system for a real vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 153(3), pages 593-606, March.
    2. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "The Multi-Trip Vehicle Routing Problem with Time Windows and Release Dates," Transportation Science, INFORMS, vol. 50(2), pages 676-693, May.
    3. Vidović, Milorad & Popović, Dražen & Ratković, Branislava, 2014. "Mixed integer and heuristics model for the inventory routing problem in fuel delivery," International Journal of Production Economics, Elsevier, vol. 147(PC), pages 593-604.
    4. Munise Kübra Şahin & Hande Yaman, 2022. "A Branch and Price Algorithm for the Heterogeneous Fleet Multi-Depot Multi-Trip Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 56(6), pages 1636-1657, November.
    5. W L Ng & S C H Leung & J K P Lam & S W Pan, 2008. "Petrol delivery tanker assignment and routing: a case study in Hong Kong," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1191-1200, September.
    6. Azi, Nabila & Gendreau, Michel & Potvin, Jean-Yves, 2007. "An exact algorithm for a single-vehicle routing problem with time windows and multiple routes," European Journal of Operational Research, Elsevier, vol. 178(3), pages 755-766, May.
    7. Sukhpal & Kaushal Kumar, 2024. "Multi-trip multi-compartment vehicle routing problem with backhauls," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(5), pages 1717-1734, May.
    8. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2020. "Two-echelon vehicle routing problem with time windows and mobile satellites," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 179-201.
    9. Dan O. Bausch & Gerald G. Brown & David Ronen, 1998. "Scheduling short-term marine transport of bulk products," Maritime Policy & Management, Taylor & Francis Journals, vol. 25(4), pages 335-348, October.
    10. Ostermeier, Manuel & Henke, Tino & Hübner, Alexander & Wäscher, Gerhard, 2021. "Multi-compartment vehicle routing problems: State-of-the-art, modeling framework and future directions," European Journal of Operational Research, Elsevier, vol. 292(3), pages 799-817.
    11. F Cornillier & F F Boctor & G Laporte & J Renaud, 2008. "An exact algorithm for the petrol station replenishment problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(5), pages 607-615, May.
    12. Pan, Binbin & Zhang, Zhenzhen & Lim, Andrew, 2021. "Multi-trip time-dependent vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 291(1), pages 218-231.
    13. Coelho, Leandro C. & Laporte, Gilbert, 2015. "Classification, models and exact algorithms for multi-compartment delivery problems," European Journal of Operational Research, Elsevier, vol. 242(3), pages 854-864.
    14. Guilherme Baptista & Miguel Vieira & Telmo Pinto, 2024. "An Exact Approach to the Multi-Compartment Vehicle Routing Problem: The Case of a Fuel Distribution Company," Mathematics, MDPI, vol. 12(4), pages 1-14, February.
    15. Zhen, Lu & Ma, Chengle & Wang, Kai & Xiao, Liyang & Zhang, Wei, 2020. "Multi-depot multi-trip vehicle routing problem with time windows and release dates," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    16. Frank, Markus & Ostermeier, Manuel & Holzapfel, Andreas & Hübner, Alexander & Kuhn, Heinrich, 2021. "Optimizing routing and delivery patterns with multi-compartment vehicles," European Journal of Operational Research, Elsevier, vol. 293(2), pages 495-510.
    17. Tamás Hajba & Zoltán Horváth & Dániel Heitz & Bálint Psenák, 2024. "A MILP approach combined with clustering to solve a special petrol station replenishment problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(1), pages 95-107, March.
    18. Huang, Nan & Li, Jiliu & Zhu, Wenbin & Qin, Hu, 2021. "The multi-trip vehicle routing problem with time windows and unloading queue at depot," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    19. Avella, Pasquale & Boccia, Maurizio & Sforza, Antonio, 2004. "Solving a fuel delivery problem by heuristic and exact approaches," European Journal of Operational Research, Elsevier, vol. 152(1), pages 170-179, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ostermeier, Manuel & Henke, Tino & Hübner, Alexander & Wäscher, Gerhard, 2021. "Multi-compartment vehicle routing problems: State-of-the-art, modeling framework and future directions," European Journal of Operational Research, Elsevier, vol. 292(3), pages 799-817.
    2. Gu, Wenjuan & Archetti, Claudia & Cattaruzza, Diego & Ogier, Maxime & Semet, Frédéric & Speranza, M. Grazia, 2024. "Vehicle routing problems with multiple commodities: A survey," European Journal of Operational Research, Elsevier, vol. 317(1), pages 1-15.
    3. He, Dongdong & Ceder, Avishai (Avi) & Zhang, Wenyi & Guan, Wei & Qi, Geqi, 2023. "Optimization of a rural bus service integrated with e-commerce deliveries guided by a new sustainable policy in China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    4. Lobo, Benjamin J. & Brown, Donald E. & Gerber, Matthew S. & Grazaitis, Peter J., 2018. "A transient stochastic simulation–optimization model for operational fuel planning in-theater," European Journal of Operational Research, Elsevier, vol. 264(2), pages 637-652.
    5. Bani, Abderrahman & El Hallaoui, Issmail & Corréa, Ayoub Insa & Tahir, Adil, 2023. "Solving a real-world multi-depot multi-period petrol replenishment problem with complex loading constraints," European Journal of Operational Research, Elsevier, vol. 311(1), pages 154-172.
    6. Zhang, Zhenzhen & Che, Yuxin & Liang, Zhe, 2024. "Split-demand multi-trip vehicle routing problem with simultaneous pickup and delivery in airport baggage transit," European Journal of Operational Research, Elsevier, vol. 312(3), pages 996-1010.
    7. Hiba Yahyaoui & Islem Kaabachi & Saoussen Krichen & Abdulkader Dekdouk, 2020. "Two metaheuristic approaches for solving the multi-compartment vehicle routing problem," Operational Research, Springer, vol. 20(4), pages 2085-2108, December.
    8. Konstantinos N. Androutsopoulos & Konstantinos G. Zografos, 2024. "Modeling and solving the fuel distribution problem with unloading precedence and loading sequence considerations," Annals of Operations Research, Springer, vol. 332(1), pages 909-947, January.
    9. Sukhpal & Kaushal Kumar, 2024. "Multi-trip multi-compartment vehicle routing problem with backhauls," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(5), pages 1717-1734, May.
    10. Wang, Yong & Wei, Zikai & Luo, Siyu & Zhou, Jingxin & Zhen, Lu, 2024. "Collaboration and resource sharing in the multidepot time-dependent vehicle routing problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    11. Heßler, Katrin, 2021. "Exact algorithms for the multi-compartment vehicle routing problem with flexible compartment sizes," European Journal of Operational Research, Elsevier, vol. 294(1), pages 188-205.
    12. Samira Mirzaei & Sanne Wøhlk, 2019. "A Branch-and-Price algorithm for two multi-compartment vehicle routing problems," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(1), pages 1-33, March.
    13. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    14. Guilherme Baptista & Miguel Vieira & Telmo Pinto, 2024. "An Exact Approach to the Multi-Compartment Vehicle Routing Problem: The Case of a Fuel Distribution Company," Mathematics, MDPI, vol. 12(4), pages 1-14, February.
    15. Vasilii A. Gromov & Konstantin A. Kuznietzov & Timothy Pigden, 2019. "Decision support system for light petroleum products supply chain," Operational Research, Springer, vol. 19(1), pages 219-236, March.
    16. A. Mor & M. G. Speranza, 2022. "Vehicle routing problems over time: a survey," Annals of Operations Research, Springer, vol. 314(1), pages 255-275, July.
    17. Katrin Heßler & Stefan Irnich, 2023. "Partial Dominance in Branch-Price-and-Cut for the Basic Multicompartment Vehicle-Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 50-65, January.
    18. Shao, Siyu & Li, Deyi & Zhou, Yaoming & Sheu, Jiuh-Biing, 2025. "Optimizing battery swapping for city-scale e-bike sharing systems: A three-stage spatial–temporal cluster-based approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 198(C).
    19. Tamás Hajba & Zoltán Horváth & Dániel Heitz & Bálint Psenák, 2024. "A MILP approach combined with clustering to solve a special petrol station replenishment problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(1), pages 95-107, March.
    20. Li, Hongqi & Wang, Feilong & Zhan, Zhuopeng, 2024. "Drone routing problem with swarm synchronization," European Journal of Operational Research, Elsevier, vol. 314(2), pages 477-495.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:325:y:2025:i:1:p:100-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.