Dynamic pharmaceutical product portfolio management with flexible resource profiles
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ejor.2025.01.011
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Gómez Sánchez, Mariam & Lalla-Ruiz, Eduardo & Fernández Gil, Alejandro & Castro, Carlos & Voß, Stefan, 2023. "Resource-constrained multi-project scheduling problem: A survey," European Journal of Operational Research, Elsevier, vol. 309(3), pages 958-976.
- Justin C. Goodson & Jeffrey W. Ohlmann & Barrett W. Thomas, 2013. "Rollout Policies for Dynamic Solutions to the Multivehicle Routing Problem with Stochastic Demand and Duration Limits," Operations Research, INFORMS, vol. 61(1), pages 138-154, February.
- Bertsimas, Dimitris & Griffith, J. Daniel & Gupta, Vishal & Kochenderfer, Mykel J. & Mišić, Velibor V., 2017. "A comparison of Monte Carlo tree search and rolling horizon optimization for large-scale dynamic resource allocation problems," European Journal of Operational Research, Elsevier, vol. 263(2), pages 664-678.
- Warren B. Powell, 2016. "Perspectives of approximate dynamic programming," Annals of Operations Research, Springer, vol. 241(1), pages 319-356, June.
- Stephen E. Chick & Jürgen Branke & Christian Schmidt, 2010. "Sequential Sampling to Myopically Maximize the Expected Value of Information," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 71-80, February.
- Tritschler, Martin & Naber, Anulark & Kolisch, Rainer, 2017. "A hybrid metaheuristic for resource-constrained project scheduling with flexible resource profiles," European Journal of Operational Research, Elsevier, vol. 262(1), pages 262-273.
- Satic, U. & Jacko, P. & Kirkbride, C., 2024. "A simulation-based approximate dynamic programming approach to dynamic and stochastic resource-constrained multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 315(2), pages 454-469.
- Ben Issa, Samer & Patterson, Raymond A. & Tu, Yiliu, 2021. "Solving resource-constrained multi-project environment under different activity assumptions," International Journal of Production Economics, Elsevier, vol. 232(C).
- Michael C. Fu & Jian-Qiang Hu & Chun-Hung Chen & Xiaoping Xiong, 2007. "Simulation Allocation for Determining the Best Design in the Presence of Correlated Sampling," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 101-111, February.
- Li, Haitao & Womer, Norman K., 2015. "Solving stochastic resource-constrained project scheduling problems by closed-loop approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 246(1), pages 20-33.
- David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
- Forman, Rebecca & Shah, Soleil & Jeurissen, Patrick & Jit, Mark & Mossialos, Elias, 2021. "COVID-19 vaccine challenges: What have we learned so far and what remains to be done?," Health Policy, Elsevier, vol. 125(5), pages 553-567.
- Hyeong Soo Chang & Michael C. Fu & Jiaqiao Hu & Steven I. Marcus, 2005. "An Adaptive Sampling Algorithm for Solving Markov Decision Processes," Operations Research, INFORMS, vol. 53(1), pages 126-139, February.
- Nicola Secomandi, 2001. "A Rollout Policy for the Vehicle Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 49(5), pages 796-802, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yu Wu & Bo Zeng & Ming Jian, 2025. "ADP- and rollout-based dynamic vehicle routing for pick-up service via budgeting capacity," Flexible Services and Manufacturing Journal, Springer, vol. 37(2), pages 513-557, June.
- Wadi Khalid Anuar & Lai Soon Lee & Hsin-Vonn Seow & Stefan Pickl, 2021. "A Multi-Depot Vehicle Routing Problem with Stochastic Road Capacity and Reduced Two-Stage Stochastic Integer Linear Programming Models for Rollout Algorithm," Mathematics, MDPI, vol. 9(13), pages 1-44, July.
- Justin C. Goodson & Barrett W. Thomas & Jeffrey W. Ohlmann, 2016. "Restocking-Based Rollout Policies for the Vehicle Routing Problem with Stochastic Demand and Duration Limits," Transportation Science, INFORMS, vol. 50(2), pages 591-607, May.
- Diana M. Negoescu & Peter I. Frazier & Warren B. Powell, 2011. "The Knowledge-Gradient Algorithm for Sequencing Experiments in Drug Discovery," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 346-363, August.
- Silva, Thiago A.O. & de Souza, Mauricio C., 2020. "Surgical scheduling under uncertainty by approximate dynamic programming," Omega, Elsevier, vol. 95(C).
- Briseida Sarasola & Karl Doerner & Verena Schmid & Enrique Alba, 2016. "Variable neighborhood search for the stochastic and dynamic vehicle routing problem," Annals of Operations Research, Springer, vol. 236(2), pages 425-461, January.
- Bosse, Alexander & Ulmer, Marlin W. & Manni, Emanuele & Mattfeld, Dirk C., 2023. "Dynamic priority rules for combining on-demand passenger transportation and transportation of goods," European Journal of Operational Research, Elsevier, vol. 309(1), pages 399-408.
- Goodson, Justin C. & Thomas, Barrett W. & Ohlmann, Jeffrey W., 2017. "A rollout algorithm framework for heuristic solutions to finite-horizon stochastic dynamic programs," European Journal of Operational Research, Elsevier, vol. 258(1), pages 216-229.
- Yijie Peng & Chun-Hung Chen & Michael C. Fu & Jian-Qiang Hu, 2016. "Dynamic Sampling Allocation and Design Selection," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 195-208, May.
- Tschernutter, Daniel & Feuerriegel, Stefan, 2025. "Data-driven dynamic police patrolling: An efficient Monte Carlo tree search," European Journal of Operational Research, Elsevier, vol. 321(1), pages 177-191.
- Bin Han & Ilya O. Ryzhov & Boris Defourny, 2016. "Optimal Learning in Linear Regression with Combinatorial Feature Selection," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 721-735, November.
- Ulmer, Marlin W. & Thomas, Barrett W., 2020. "Meso-parametric value function approximation for dynamic customer acceptances in delivery routing," European Journal of Operational Research, Elsevier, vol. 285(1), pages 183-195.
- Briseida Sarasola & Karl F. Doerner & Verena Schmid & Enrique Alba, 2016. "Variable neighborhood search for the stochastic and dynamic vehicle routing problem," Annals of Operations Research, Springer, vol. 236(2), pages 425-461, January.
- Zhongshun Shi & Siyang Gao & Hui Xiao & Weiwei Chen, 2019. "A worst‐case formulation for constrained ranking and selection with input uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(8), pages 648-662, December.
- Florio, Alexandre M. & Hartl, Richard F. & Minner, Stefan, 2020. "Optimal a priori tour and restocking policy for the single-vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 285(1), pages 172-182.
- Oleg Szehr, 2021. "Hedging of Financial Derivative Contracts via Monte Carlo Tree Search," Papers 2102.06274, arXiv.org, revised Apr 2021.
- Chunlai Yu & Xiaoming Wang & Qingxin Chen, 2025. "Efficient Rollout Algorithms for Resource-Constrained Project Scheduling with a Flexible Project Structure and Uncertain Activity Durations," Mathematics, MDPI, vol. 13(9), pages 1-25, April.
- Bertazzi, Luca & Secomandi, Nicola, 2018. "Faster rollout search for the vehicle routing problem with stochastic demands and restocking," European Journal of Operational Research, Elsevier, vol. 270(2), pages 487-497.
- Shu Zhang & Jeffrey W. Ohlmann & Barrett W. Thomas, 2018. "Dynamic Orienteering on a Network of Queues," Transportation Science, INFORMS, vol. 52(3), pages 691-706, June.
- Juergen Branke & Wen Zhang, 2019. "Identifying efficient solutions via simulation: myopic multi-objective budget allocation for the bi-objective case," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 831-865, September.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:324:y:2025:i:1:p:308-323. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.