IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v310y2023i2p597-610.html
   My bibliography  Save this article

An asymmetric traveling salesman problem based matheuristic algorithm for flowshop group scheduling problem

Author

Listed:
  • He, Xuan
  • Pan, Quan-Ke
  • Gao, Liang
  • Neufeld, Janis S.

Abstract

The flowshop group scheduling problem (FGSP) has become a hot research problem owing to its practical applications in modern industry in recent years. The FGSP can be regarded as a combination of two coupled sub-problems. One is the group scheduling sub-problem with sequence-dependent setup times. The other is the job scheduling sub-problem within each group. A mixed integer linear programming model is built for the FGSP with the makespan criterion. Based on the problem-specific knowledge, i.e., the sequence-dependent group setup times are greater than the processing time of jobs, and the number of machines is small, the group scheduling sub-problem is approximated into an asymmetric traveling salesman problem (ATSP). Then, a matheuristic algorithm (MA) is proposed by integrating a branch-and-cut algorithm and an iterated greedy (IG) algorithm, where the branch-and-cut algorithm is used to generate the optimal Hamiltonian circuit for sub-group sequences of a group sequence obtained by the IG. On 405 test instances, the proposed MA performs significantly better than several state-of-the-art algorithms in the literature.

Suggested Citation

  • He, Xuan & Pan, Quan-Ke & Gao, Liang & Neufeld, Janis S., 2023. "An asymmetric traveling salesman problem based matheuristic algorithm for flowshop group scheduling problem," European Journal of Operational Research, Elsevier, vol. 310(2), pages 597-610.
  • Handle: RePEc:eee:ejores:v:310:y:2023:i:2:p:597-610
    DOI: 10.1016/j.ejor.2023.03.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723002655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.03.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taha Keshavarz & Nasser Salmasi, 2014. "Efficient upper and lower bounding methods for flowshop sequence-dependent group scheduling problems," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 8(3), pages 366-387.
    2. Hamed Hendizadeh, S. & Faramarzi, Hamidreza & Mansouri, S.Afshin & Gupta, Jatinder N.D. & Y ElMekkawy, Tarek, 2008. "Meta-heuristics for scheduling a flowline manufacturing cell with sequence dependent family setup times," International Journal of Production Economics, Elsevier, vol. 111(2), pages 593-605, February.
    3. Antonio Costa & Fulvio Antonio Cappadonna & Sergio Fichera, 2017. "A hybrid genetic algorithm for minimizing makespan in a flow-shop sequence-dependent group scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1269-1283, August.
    4. Yang, Dar-Li & Kuo, Wen-Hung & Chern, Maw-Sheng, 2008. "Multi-family scheduling in a two-machine reentrant flow shop with setups," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1160-1170, June.
    5. Balma, Ali & Salem, Safa Ben & Mrad, Mehdi & Ladhari, Talel, 2018. "Strong multi-commodity flow formulations for the asymmetric traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 271(1), pages 72-79.
    6. J.S. Neufeld & J.N.D. Gupta & U. Buscher, 2015. "Minimising makespan in flowshop group scheduling with sequence-dependent family set-up times using inserted idle times," International Journal of Production Research, Taylor & Francis Journals, vol. 53(6), pages 1791-1806, March.
    7. Pan, Quan-Ke, 2016. "An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous casting scheduling," European Journal of Operational Research, Elsevier, vol. 250(3), pages 702-714.
    8. Saeed Behjat & Nasser Salmasi, 2017. "Total completion time minimisation of no-wait flowshop group scheduling problem with sequence dependent setup times," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 11(1), pages 22-48.
    9. Ying-Ying Huang & Quan-Ke Pan & Liang Gao, 2023. "An effective memetic algorithm for the distributed flowshop scheduling problem with an assemble machine," International Journal of Production Research, Taylor & Francis Journals, vol. 61(6), pages 1755-1770, March.
    10. Bagchi, Tapan P. & Gupta, Jatinder N.D. & Sriskandarajah, Chelliah, 2006. "A review of TSP based approaches for flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 169(3), pages 816-854, March.
    11. B. Naderi & Nasser Salmasi, 2012. "Permutation flowshops in group scheduling with sequence-dependent setup times," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 6(2), pages 177-198.
    12. Liu, Jiyin & Reeves, Colin R, 2001. "Constructive and composite heuristic solutions to the P//[summation operator]Ci scheduling problem," European Journal of Operational Research, Elsevier, vol. 132(2), pages 439-452, July.
    13. Jean-François Cordeau & Gianpaolo Ghiani & Emanuela Guerriero, 2014. "Analysis and Branch-and-Cut Algorithm for the Time-Dependent Travelling Salesman Problem," Transportation Science, INFORMS, vol. 48(1), pages 46-58, February.
    14. Cacchiani, Valentina & Contreras-Bolton, Carlos & Toth, Paolo, 2020. "Models and algorithms for the Traveling Salesman Problem with Time-dependent Service times," European Journal of Operational Research, Elsevier, vol. 283(3), pages 825-843.
    15. Ruiz, Ruben & Stutzle, Thomas, 2007. "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2033-2049, March.
    16. Gupta, Jatinder N. D. & Darrow, William P., 1986. "The two-machine sequence dependent flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 24(3), pages 439-446, March.
    17. Taha Keshavarz & Nasser Salmasi & Mohsen Varmazyar, 2019. "Flowshop sequence-dependent group scheduling with minimisation of weighted earliness and tardiness," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 13(1), pages 54-80.
    18. Matteo Fischetti & Paolo Toth, 1997. "A Polyhedral Approach to the Asymmetric Traveling Salesman Problem," Management Science, INFORMS, vol. 43(11), pages 1520-1536, November.
    19. Victor Fernandez-Viagas & Jose M. Framinan, 2015. "A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 53(4), pages 1111-1123, February.
    20. Missaoui, Ahmed & Ruiz, Rubén, 2022. "A parameter-Less iterated greedy method for the hybrid flowshop scheduling problem with setup times and due date windows," European Journal of Operational Research, Elsevier, vol. 303(1), pages 99-113.
    21. Schaller, Jeffrey E. & Gupta, Jatinder N. D. & Vakharia, Asoo J., 2000. "Scheduling a flowline manufacturing cell with sequence dependent family setup times," European Journal of Operational Research, Elsevier, vol. 125(2), pages 324-339, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahvari, Omid & Logendran, Rasaratnam, 2016. "Hybrid flow shop batching and scheduling with a bi-criteria objective," International Journal of Production Economics, Elsevier, vol. 179(C), pages 239-258.
    2. Mohammad Reza Hosseinzadeh & Mehdi Heydari & Mohammad Mahdavi Mazdeh, 2022. "Mathematical modeling and two metaheuristic algorithms for integrated process planning and group scheduling with sequence-dependent setup time," Operational Research, Springer, vol. 22(5), pages 5055-5105, November.
    3. Liou, Cheng-Dar & Hsieh, Yi-Chih, 2015. "A hybrid algorithm for the multi-stage flow shop group scheduling with sequence-dependent setup and transportation times," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 258-267.
    4. Allahverdi, Ali, 2015. "The third comprehensive survey on scheduling problems with setup times/costs," European Journal of Operational Research, Elsevier, vol. 246(2), pages 345-378.
    5. Chenyao Zhang & Yuyan Han & Yuting Wang & Junqing Li & Kaizhou Gao, 2023. "A Distributed Blocking Flowshop Scheduling with Setup Times Using Multi-Factory Collaboration Iterated Greedy Algorithm," Mathematics, MDPI, vol. 11(3), pages 1-25, January.
    6. Lin, Shih-Wei & Ying, Kuo-Ching & Lu, Chung-Cheng & Gupta, Jatinder N.D., 2011. "Applying multi-start simulated annealing to schedule a flowline manufacturing cell with sequence dependent family setup times," International Journal of Production Economics, Elsevier, vol. 130(2), pages 246-254, April.
    7. Wang, Yuhang & Han, Yuyan & Wang, Yuting & Tasgetiren, M. Fatih & Li, Junqing & Gao, Kaizhou, 2023. "Intelligent optimization under the makespan constraint: Rapid evaluation mechanisms based on the critical machine for the distributed flowshop group scheduling problem," European Journal of Operational Research, Elsevier, vol. 311(3), pages 816-832.
    8. Dung-Ying Lin & Tzu-Yun Huang, 2021. "A Hybrid Metaheuristic for the Unrelated Parallel Machine Scheduling Problem," Mathematics, MDPI, vol. 9(7), pages 1-20, April.
    9. Shen, Liji & Buscher, Udo, 2012. "Solving the serial batching problem in job shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 14-26.
    10. Pan, Quan-Ke & Gao, Liang & Li, Xin-Yu & Gao, Kai-Zhou, 2017. "Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 89-112.
    11. Perez-Gonzalez, Paz & Framinan, Jose M., 2024. "A review and classification on distributed permutation flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 1-21.
    12. Pagnozzi, Federico & Stützle, Thomas, 2019. "Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 409-421.
    13. Sioud, A. & Gagné, C., 2018. "Enhanced migrating birds optimization algorithm for the permutation flow shop problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 264(1), pages 66-73.
    14. Shuaipeng Yuan & Tieke Li & Bailin Wang, 2021. "A discrete differential evolution algorithm for flow shop group scheduling problem with sequence-dependent setup and transportation times," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 427-439, February.
    15. Liji Shen & Jatinder N. D. Gupta, 2018. "Family scheduling with batch availability in flow shops to minimize makespan," Journal of Scheduling, Springer, vol. 21(2), pages 235-249, April.
    16. Antonio Costa & Fulvio Antonio Cappadonna & Sergio Fichera, 2017. "A hybrid genetic algorithm for minimizing makespan in a flow-shop sequence-dependent group scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1269-1283, August.
    17. Pan, Quan-Ke & Wang, Ling, 2012. "Effective heuristics for the blocking flowshop scheduling problem with makespan minimization," Omega, Elsevier, vol. 40(2), pages 218-229, April.
    18. Zhang, Qin & Liu, Yu & Xiahou, Tangfan & Huang, Hong-Zhong, 2023. "A heuristic maintenance scheduling framework for a military aircraft fleet under limited maintenance capacities," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    19. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    20. Logendran, Rasaratnam & deSzoeke, Paula & Barnard, Faith, 2006. "Sequence-dependent group scheduling problems in flexible flow shops," International Journal of Production Economics, Elsevier, vol. 102(1), pages 66-86, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:310:y:2023:i:2:p:597-610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.