IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v301y2022i3p1133-1148.html
   My bibliography  Save this article

Dynamic gate configurations at airports: A network optimization approach

Author

Listed:
  • Hagspihl, Thomas
  • Kolisch, Rainer
  • Ruf, Christian
  • Schiffels, Sebastian

Abstract

We consider the configuration of airport gates with passenger boarding bridges. The set of aircraft types that can be serviced at a gate depends on the installed boarding bridge(s). For instance, the Airbus A380 can only be serviced at gates equipped with a passenger boarding bridge that is able to access its upper level. Given the dynamic development of both the number of aircraft movements and the fleet mix at airports, the recurring decision problem is to determine for each gate whether and when the passenger boarding bridge configuration should be changed. The objective is to minimize investment and operating costs associated with the bridges as well as penalty costs for aircraft which cannot be processed because gates that are equipped with adequate gate configurations are not available. We propose a mixed-integer model formulation and present its underlying network structure. To solve the problem, we employ a column generation based heuristic approach. We demonstrate the good performance of the heuristic in a computational study and present a detailed discussion of the decisions taken as part of a case study.

Suggested Citation

  • Hagspihl, Thomas & Kolisch, Rainer & Ruf, Christian & Schiffels, Sebastian, 2022. "Dynamic gate configurations at airports: A network optimization approach," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1133-1148.
  • Handle: RePEc:eee:ejores:v:301:y:2022:i:3:p:1133-1148
    DOI: 10.1016/j.ejor.2021.12.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172101033X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.12.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daş, Gülesin Sena & Gzara, Fatma & Stützle, Thomas, 2020. "A review on airport gate assignment problems: Single versus multi objective approaches," Omega, Elsevier, vol. 92(C).
    2. Dorndorf, Ulrich & Drexl, Andreas & Nikulin, Yury & Pesch, Erwin, 2007. "Flight gate scheduling: State-of-the-art and recent developments," Omega, Elsevier, vol. 35(3), pages 326-334, June.
    3. Wirasinghe, S. C. & Bandara, S., 1990. "Airport gate position estimation for minimum total costs--Approximate closed form solution," Transportation Research Part B: Methodological, Elsevier, vol. 24(4), pages 287-297, August.
    4. Jacques Desrosiers & Marco E. Lübbecke, 2005. "A Primer in Column Generation," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 1-32, Springer.
    5. Narciso, Mercedes E. & Piera, Miquel A., 2015. "Robust gate assignment procedures from an airport management perspective," Omega, Elsevier, vol. 50(C), pages 82-95.
    6. Guépet, J. & Acuna-Agost, R. & Briant, O. & Gayon, J.P., 2015. "Exact and heuristic approaches to the airport stand allocation problem," European Journal of Operational Research, Elsevier, vol. 246(2), pages 597-608.
    7. Caves, Robert, 1994. "A search for more airport apron capacity," Journal of Air Transport Management, Elsevier, vol. 1(2), pages 109-120.
    8. Gerald N. Steuart, 1974. "Gate Position Requirements at Metropolitan Airports," Transportation Science, INFORMS, vol. 8(2), pages 169-189, May.
    9. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2017. "Flight gate assignment and recovery strategies with stochastic arrival and departure times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 65-93, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Liang & Zhang, Chao & Xiao, Feng & Wang, Fan, 2017. "A robust approach to airport gate assignment with a solution-dependent uncertainty budget," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 458-478.
    2. Zhang, Dong & Klabjan, Diego, 2017. "Optimization for gate re-assignment," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 260-284.
    3. Karsu, Özlem & Azizoğlu, Meral & Alanlı, Kerem, 2021. "Exact and heuristic solution approaches for the airport gate assignment problem," Omega, Elsevier, vol. 103(C).
    4. Skorupski, Jacek & Żarów, Piotr, 2021. "Dynamic management of aircraft stand allocation," Journal of Air Transport Management, Elsevier, vol. 90(C).
    5. Bert Dijk & Bruno F. Santos & Joao P. Pita, 2019. "The recoverable robust stand allocation problem: a GRU airport case study," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 615-639, September.
    6. Li, Mingjie & Hao, Jin-Kao & Wu, Qinghua, 2022. "Learning-driven feasible and infeasible tabu search for airport gate assignment," European Journal of Operational Research, Elsevier, vol. 302(1), pages 172-186.
    7. Kim, Junyoung & Goo, Byungju & Roh, Youngjoo & Lee, Chungmok & Lee, Kyungsik, 2023. "A branch-and-price approach for airport gate assignment problem with chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 1-26.
    8. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2017. "Flight gate assignment and recovery strategies with stochastic arrival and departure times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 65-93, January.
    9. Zhao, Peixin & Han, Xue & Wan, Di, 2021. "Evaluation of the airport ferry vehicle scheduling based on network maximum flow model," Omega, Elsevier, vol. 99(C).
    10. Pternea, Moschoula & Haghani, Ali, 2019. "An aircraft-to-gate reassignment framework for dealing with schedule disruptions," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 116-132.
    11. Hutter, Leonie & Jaehn, Florian & Neumann, Simone, 2019. "Influencing factors on airplane boarding times," Omega, Elsevier, vol. 87(C), pages 177-190.
    12. Daş, Gülesin Sena & Gzara, Fatma & Stützle, Thomas, 2020. "A review on airport gate assignment problems: Single versus multi objective approaches," Omega, Elsevier, vol. 92(C).
    13. Ahmadi, Sobhan & Akgunduz, Ali, 2023. "Airport operations with electric-powered towing alternatives under stochastic conditions," Journal of Air Transport Management, Elsevier, vol. 109(C).
    14. Yin, Suwan & Han, Ke & Ochieng, Washington Yotto & Sanchez, Daniel Regueiro, 2022. "Joint apron-runway assignment for airport surface operations," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 76-100.
    15. Konstantinos G. Zografos & Michael A. Madas & Konstantinos N. Androutsopoulos, 2017. "Increasing airport capacity utilisation through optimum slot scheduling: review of current developments and identification of future needs," Journal of Scheduling, Springer, vol. 20(1), pages 3-24, February.
    16. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    17. Silva, João & Kalakou, Sofia & Andrade, Antonio R., 2023. "Maximizing non-aeronautical revenues in airport terminals using gate assignment and passenger behaviour modelling," Journal of Air Transport Management, Elsevier, vol. 112(C).
    18. Dorndorf, Ulrich & Drexl, Andreas & Nikulin, Yury & Pesch, Erwin, 2005. "Flight gate scheduling: State-of-the-art and recent developments," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 584, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    19. Xue Han & Peixin Zhao & Qingchun Meng & Shengnan Yin & Di Wan, 2020. "Optimal scheduling of airport ferry vehicles based on capacity network," Annals of Operations Research, Springer, vol. 295(1), pages 163-182, December.
    20. Bolat, Ahmet, 2000. "Procedures for providing robust gate assignments for arriving aircrafts," European Journal of Operational Research, Elsevier, vol. 120(1), pages 63-80, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:301:y:2022:i:3:p:1133-1148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.