IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v298y2022i1p36-44.html
   My bibliography  Save this article

The minimum mean cycle-canceling algorithm for linear programs

Author

Listed:
  • Gauthier, Jean Bertrand
  • Desrosiers, Jacques

Abstract

This paper presents the properties of the minimum mean cycle-canceling algorithm for solving linear programming models. Originally designed for solving network flow problems for which it runs in strongly polynomial time, most of its properties are preserved. This is at the price of adapting the fundamental decomposition theorem of a network flow solution together with various definitions: that of a cycle and the way to calculate its cost, the residual problem, and the improvement factor at the end of a phase. We also use the primal and dual necessary and sufficient optimality conditions stated on the residual problem for establishing the pricing step giving its name to the algorithm. It turns out that the successive solutions need not be basic, there are no degenerate pivots, and the improving directions are potentially interior in addition to those on edges. For solving an m×n linear program, it requires a pseudo-polynomial number O(nΔ) of so-called phases, where Δ depends on the number of rows and the coefficient matrix.

Suggested Citation

  • Gauthier, Jean Bertrand & Desrosiers, Jacques, 2022. "The minimum mean cycle-canceling algorithm for linear programs," European Journal of Operational Research, Elsevier, vol. 298(1), pages 36-44.
  • Handle: RePEc:eee:ejores:v:298:y:2022:i:1:p:36-44
    DOI: 10.1016/j.ejor.2021.09.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721007979
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.09.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Issmail Elhallaoui & Abdelmoutalib Metrane & Guy Desaulniers & François Soumis, 2011. "An Improved Primal Simplex Algorithm for Degenerate Linear Programs," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 569-577, November.
    2. A. Pessoa & R. Sadykov & E. Uchoa & F. Vanderbeck, 2018. "Automation and Combination of Linear-Programming Based Stabilization Techniques in Column Generation," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 339-360, May.
    3. Issmail Elhallaoui & Daniel Villeneuve & François Soumis & Guy Desaulniers, 2005. "Dynamic Aggregation of Set-Partitioning Constraints in Column Generation," Operations Research, INFORMS, vol. 53(4), pages 632-645, August.
    4. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luciano Costa & Claudio Contardo & Guy Desaulniers & Julian Yarkony, 2022. "Stabilized Column Generation Via the Dynamic Separation of Aggregated Rows," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1141-1156, March.
    2. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    3. Rosat, Samuel & Quesnel, Frédéric & Elhallaoui, Issmail & Soumis, François, 2017. "Dynamic penalization of fractional directions in the integral simplex using decomposition: Application to aircrew scheduling," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1007-1018.
    4. Jean Bertrand Gauthier & Jacques Desrosiers & Marco E. Lübbecke, 2016. "Tools for primal degenerate linear programs: IPS, DCA, and PE," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(2), pages 161-204, June.
    5. Bouarab, Hocine & El Hallaoui, Issmail & Metrane, Abdelmoutalib & Soumis, François, 2017. "Dynamic constraint and variable aggregation in column generation," European Journal of Operational Research, Elsevier, vol. 262(3), pages 835-850.
    6. Guy Desaulniers & François Lessard & Mohammed Saddoune & François Soumis, 2020. "Dynamic Constraint Aggregation for Solving Very Large-scale Airline Crew Pairing Problems," SN Operations Research Forum, Springer, vol. 1(3), pages 1-23, September.
    7. Jérémy Omer & Samuel Rosat & Vincent Raymond & François Soumis, 2015. "Improved Primal Simplex: A More General Theoretical Framework and an Extended Experimental Analysis," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 773-787, November.
    8. Adil Tahir & Guy Desaulniers & Issmail El Hallaoui, 2019. "Integral column generation for the set partitioning problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 713-744, December.
    9. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    10. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    11. Kristiaan Kerstens & Jafar Sadeghi & Ignace Van de Woestyne, 2020. "Plant capacity notions in a non-parametric framework: a brief review and new graph or non-oriented plant capacities," Annals of Operations Research, Springer, vol. 288(2), pages 837-860, May.
    12. Omer, Jérémy & Soumis, François, 2015. "A linear programming decomposition focusing on the span of the nondegenerate columns," European Journal of Operational Research, Elsevier, vol. 245(2), pages 371-383.
    13. Yande Gong & Joe Zhu & Ya Chen & Wade D. Cook, 2018. "DEA as a tool for auditing: application to Chinese manufacturing industry with parallel network structures," Annals of Operations Research, Springer, vol. 263(1), pages 247-269, April.
    14. Johannes König & Carsten Schröder, 2018. "Inequality-minimization with a given public budget," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(4), pages 607-629, December.
    15. Harald Dyckhoff & Katrin Allen, 1999. "Theoretische Begründung einer Effizienzanalyse mittels Data Envelopment Analysis (DEA)," Schmalenbach Journal of Business Research, Springer, vol. 51(5), pages 411-436, May.
    16. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    17. Yu, Shasha & Lei, Ming & Deng, Honghui, 2023. "Evaluation to fixed-sum-outputs DMUs by non-oriented equilibrium efficient frontier DEA approach with Nash bargaining-based selection," Omega, Elsevier, vol. 115(C).
    18. Phung, Manh-Trung & Cheng, Cheng-Ping & Guo, Chuanyin & Kao, Chen-Yu, 2020. "Mixed Network DEA with Shared Resources: A Case of Measuring Performance for Banking Industry," Operations Research Perspectives, Elsevier, vol. 7(C).
    19. Chen, Kuan-Chen & Lin, Sun-Yuan & Yu, Ming-Miin, 2022. "Exploring the efficiency of hospital and pharmacy utilizations in Taiwan: An application of dynamic network data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    20. Griset, Rodolphe & Bendotti, Pascale & Detienne, Boris & Porcheron, Marc & Şen, Halil & Vanderbeck, François, 2022. "Combining Dantzig-Wolfe and Benders decompositions to solve a large-scale nuclear outage planning problem," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1067-1083.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:298:y:2022:i:1:p:36-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.