IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v289y2021i1p93-106.html
   My bibliography  Save this article

Vehicle routing with endogenous learning: Application to offshore plug and abandonment campaign planning

Author

Listed:
  • Bakker, Steffen J.
  • Wang, Akang
  • Gounaris, Chrysanthos E.

Abstract

When a particular service is performed many times, the duration of the service might reduce due to the effect of learning from similar tasks that have been performed before. In this article, we present an approach to account for such learning effects that arise in the context of vehicle routing operations. Our approach enables the consideration of endogenous learning, where the service times are dependent on the experience that is to be gained in the same routing horizon. We apply our approach to the problem of planning an offshore plug and abandonment campaign, where different vessels are being used to perform plugging operations on offshore oil and gas wells. We extend existing instances for this problem with observed learning data and investigate the effects of learning and cooperation. Results show that the inclusion of an endogenous learning effect leads to different and significantly better solutions compared to those that are found when the learning effect is neglected.

Suggested Citation

  • Bakker, Steffen J. & Wang, Akang & Gounaris, Chrysanthos E., 2021. "Vehicle routing with endogenous learning: Application to offshore plug and abandonment campaign planning," European Journal of Operational Research, Elsevier, vol. 289(1), pages 93-106.
  • Handle: RePEc:eee:ejores:v:289:y:2021:i:1:p:93-106
    DOI: 10.1016/j.ejor.2020.06.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720305828
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.06.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R Baldacci & E Bartolini & G Laporte, 2010. "Some applications of the generalized vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(7), pages 1072-1077, July.
    2. Luo, Zhixing & Qin, Hu & Lim, Andrew, 2014. "Branch-and-price-and-cut for the multiple traveling repairman problem with distance constraints," European Journal of Operational Research, Elsevier, vol. 234(1), pages 49-60.
    3. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    4. Schneider, Michael, 2016. "The vehicle-routing problem with time windows and driver-specific times," European Journal of Operational Research, Elsevier, vol. 250(1), pages 101-119.
    5. Guy Desaulniers & Fausto Errico & Stefan Irnich & Michael Schneider, 2016. "Exact Algorithms for Electric Vehicle-Routing Problems with Time Windows," Operations Research, INFORMS, vol. 64(6), pages 1388-1405, December.
    6. Ameni Azzouz & Meriem Ennigrou & Lamjed Ben Said, 2018. "Scheduling problems under learning effects: classification and cartography," International Journal of Production Research, Taylor & Francis Journals, vol. 56(4), pages 1642-1661, February.
    7. Bektas, Tolga, 2006. "The multiple traveling salesman problem: an overview of formulations and solution procedures," Omega, Elsevier, vol. 34(3), pages 209-219, June.
    8. Mads Jepsen & Bjørn Petersen & Simon Spoorendonk & David Pisinger, 2008. "Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time Windows," Operations Research, INFORMS, vol. 56(2), pages 497-511, April.
    9. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti, 2011. "New Route Relaxation and Pricing Strategies for the Vehicle Routing Problem," Operations Research, INFORMS, vol. 59(5), pages 1269-1283, October.
    10. Biskup, Dirk, 2008. "A state-of-the-art review on scheduling with learning effects," European Journal of Operational Research, Elsevier, vol. 188(2), pages 315-329, July.
    11. G. Dantzig & R. Fulkerson & S. Johnson, 1954. "Solution of a Large-Scale Traveling-Salesman Problem," Operations Research, INFORMS, vol. 2(4), pages 393-410, November.
    12. Irawan, Chandra Ade & Ouelhadj, Djamila & Jones, Dylan & Stålhane, Magnus & Sperstad, Iver Bakken, 2017. "Optimisation of maintenance routing and scheduling for offshore wind farms," European Journal of Operational Research, Elsevier, vol. 256(1), pages 76-89.
    13. Gouveia, Luis & Pires, Jose Manuel, 1999. "The asymmetric travelling salesman problem and a reformulation of the Miller-Tucker-Zemlin constraints," European Journal of Operational Research, Elsevier, vol. 112(1), pages 134-146, January.
    14. Schneider, M., 2016. "The vehicle-routing problem with time windows and driver-specific times," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65941, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    15. Chen, Xi & Thomas, Barrett W. & Hewitt, Mike, 2016. "The technician routing problem with experience-based service times," Omega, Elsevier, vol. 61(C), pages 49-61.
    16. Maria Battarra & Güneş Erdoğan & Daniele Vigo, 2014. "Exact Algorithms for the Clustered Vehicle Routing Problem," Operations Research, INFORMS, vol. 62(1), pages 58-71, February.
    17. Hongsheng Zhong & Randolph W. Hall & Maged Dessouky, 2007. "Territory Planning and Vehicle Dispatching with Driver Learning," Transportation Science, INFORMS, vol. 41(1), pages 74-89, February.
    18. Ribeiro, Glaydston Mattos & Laporte, Gilbert & Mauri, Geraldo Regis, 2012. "A comparison of three metaheuristics for the workover rig routing problem," European Journal of Operational Research, Elsevier, vol. 220(1), pages 28-36.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Yu & Van Woensel, Tom & Veelenturf, Lucas P. & Mo, Pengli, 2021. "The consistent vehicle routing problem considering path consistency in a road network," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 21-44.
    2. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    3. Quirion-Blais, Olivier & Chen, Lu, 2021. "A case-based reasoning approach to solve the vehicle routing problem with time windows and drivers’ experience," Omega, Elsevier, vol. 102(C).
    4. Christian Tilk & Michael Drexl & Stefan Irnich, 2018. "Nested Branch-and-Price-and-Cut for Vehicle Routing Problems with Multiple Resource Interdependencies," Working Papers 1801, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    5. Ann-Kathrin Rothenbächer & Michael Drexl & Stefan Irnich, 2018. "Branch-and-Price-and-Cut for the Truck-and-Trailer Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 52(5), pages 1174-1190, October.
    6. Timo Gschwind & Stefan Irnich & Simon Emde & Christian Tilk, 2018. "Branch-Cut-and-Price for the Scheduling Deliveries with Time Windows in a Direct Shipping Network," Working Papers 1805, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    7. Timo Gschwind & Stefan Irnich & Christian Tilk & Simon Emde, 2020. "Branch-cut-and-price for scheduling deliveries with time windows in a direct shipping network," Journal of Scheduling, Springer, vol. 23(3), pages 363-377, June.
    8. Liu, Yiming & Roberto, Baldacci & Zhou, Jianwen & Yu, Yang & Zhang, Yu & Sun, Wei, 2023. "Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 310(1), pages 133-155.
    9. Nikolaus Furian & Michael O’Sullivan & Cameron Walker & Eranda Çela, 2021. "A machine learning-based branch and price algorithm for a sampled vehicle routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 693-732, September.
    10. Ali, Ousmane & Côté, Jean-François & Coelho, Leandro C., 2021. "Models and algorithms for the delivery and installation routing problem," European Journal of Operational Research, Elsevier, vol. 291(1), pages 162-177.
    11. Runfeng Yu & Lifen Yun & Chen Chen & Yuanjie Tang & Hongqiang Fan & Yi Qin, 2023. "Vehicle Routing Optimization for Vaccine Distribution Considering Reducing Energy Consumption," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    12. Juho Andelmin & Enrico Bartolini, 2017. "An Exact Algorithm for the Green Vehicle Routing Problem," Transportation Science, INFORMS, vol. 51(4), pages 1288-1303, November.
    13. Katrin Heßler & Stefan Irnich, 2021. "Partial Dominance in Branch-Price-and-Cut for the Basic Multi-Compartment Vehicle-Routing Problem," Working Papers 2115, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    14. Christian Tilk & Ann-Kathrin Rothenbächer & Timo Gschwind & Stefan Irnich, 2016. "Asymmetry Helps: Dynamic Half-Way Points for Solving Shortest Path Problems with Resource Constraints Faster," Working Papers 1615, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    15. Tilk, Christian & Rothenbächer, Ann-Kathrin & Gschwind, Timo & Irnich, Stefan, 2017. "Asymmetry matters: Dynamic half-way points in bidirectional labeling for solving shortest path problems with resource constraints faster," European Journal of Operational Research, Elsevier, vol. 261(2), pages 530-539.
    16. Bock, Stefan, 2020. "Optimally solving a versatile Traveling Salesman Problem on tree networks with soft due dates and multiple congestion scenarios," European Journal of Operational Research, Elsevier, vol. 283(3), pages 863-882.
    17. Miao Yu & Viswanath Nagarajan & Siqian Shen, 2022. "Improving Column Generation for Vehicle Routing Problems via Random Coloring and Parallelization," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 953-973, March.
    18. Christian Tilk & Nicola Bianchessi & Michael Drexl & Stefan Irnich & Frank Meisel, 2018. "Branch-and-Price-and-Cut for the Active-Passive Vehicle-Routing Problem," Transportation Science, INFORMS, vol. 52(2), pages 300-319, March.
    19. Liu, Chuanju & Zhang, Junlong & Lin, Shaochong & Shen, Zuo-Jun Max, 2023. "Service network design with consistent multiple trips," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    20. Albert H. Schrotenboer & Evrim Ursavas & Iris F. A. Vis, 2019. "A Branch-and-Price-and-Cut Algorithm for Resource-Constrained Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 53(4), pages 1001-1022, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:289:y:2021:i:1:p:93-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.