IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v282y2020i1p334-344.html
   My bibliography  Save this article

Shortest path tour problem with time windows

Author

Listed:
  • Di Puglia Pugliese, Luigi
  • Ferone, Daniele
  • Festa, Paola
  • Guerriero, Francesca

Abstract

This paper aims at studying a new variant of the shortest path tour problem, where time window constraints are taken into account. This is the first work dealing with the shortest path tour problem with time windows. The problem is formally described and its theoretical properties are analyzed. We prove that it belongs to the NP-hard class of complexity by polynomial reduction from the knapsack problem. An optimal solution approach based on the dynamic programming paradigm is devised. Labelling algorithms are defined along with well-tailored pruning strategies based on cost and time. The correctness of the bounding strategies is proven and the empirical behavior is analyzed in depth. In order to evaluate the performance of the proposed approach, extensive computational experiments have been carried out on a significant set of test problems derived from benchmarks for the shortest path tour problem. Sensitivity analysis is carried out by considering both algorithmic and instance parameters.

Suggested Citation

  • Di Puglia Pugliese, Luigi & Ferone, Daniele & Festa, Paola & Guerriero, Francesca, 2020. "Shortest path tour problem with time windows," European Journal of Operational Research, Elsevier, vol. 282(1), pages 334-344.
  • Handle: RePEc:eee:ejores:v:282:y:2020:i:1:p:334-344
    DOI: 10.1016/j.ejor.2019.08.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719307222
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.08.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L Moccia & J-F Cordeau & G Laporte, 2012. "An incremental tabu search heuristic for the generalized vehicle routing problem with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(2), pages 232-244, February.
    2. Desrochers, Martin & Soumis, Francois, 1988. "A reoptimization algorithm for the shortest path problem with time windows," European Journal of Operational Research, Elsevier, vol. 35(2), pages 242-254, May.
    3. Ghiani, Gianpaolo & Improta, Gennaro, 2000. "An efficient transformation of the generalized vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 122(1), pages 11-17, April.
    4. Di Puglia Pugliese, Luigi & Guerriero, Francesca, 2013. "Shortest path problem with forbidden paths: The elementary version," European Journal of Operational Research, Elsevier, vol. 227(2), pages 254-267.
    5. Festa, P. & Guerriero, F. & Laganà, D. & Musmanno, R., 2013. "Solving the shortest path tour problem," European Journal of Operational Research, Elsevier, vol. 230(3), pages 464-474.
    6. Salani, Matteo & Vacca, Ilaria, 2011. "Branch and price for the vehicle routing problem with discrete split deliveries and time windows," European Journal of Operational Research, Elsevier, vol. 213(3), pages 470-477, September.
    7. Tagmouti, Mariam & Gendreau, Michel & Potvin, Jean-Yves, 2007. "Arc routing problems with time-dependent service costs," European Journal of Operational Research, Elsevier, vol. 181(1), pages 30-39, August.
    8. Daniele Ferone & Aljoscha Gruler & Paola Festa & Angel A. Juan, 2019. "Enhancing and extending the classical GRASP framework with biased randomisation and simulation," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(8), pages 1362-1375, August.
    9. Qureshi, A.G. & Taniguchi, E. & Yamada, T., 2009. "An exact solution approach for vehicle routing and scheduling problems with soft time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(6), pages 960-977, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. L. Di Puglia Pugliese & D. Ferone & P. Festa & F. Guerriero, 2022. "A generalized shortest path tour problem with time windows," Computational Optimization and Applications, Springer, vol. 83(2), pages 593-614, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. Di Puglia Pugliese & D. Ferone & P. Festa & F. Guerriero, 2022. "A generalized shortest path tour problem with time windows," Computational Optimization and Applications, Springer, vol. 83(2), pages 593-614, November.
    2. Bhusiri, Narath & Qureshi, Ali Gul & Taniguchi, Eiichi, 2014. "The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 1-22.
    3. Ozbaygin, Gizem & Ekin Karasan, Oya & Savelsbergh, Martin & Yaman, Hande, 2017. "A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 115-137.
    4. Hernandez, Florent & Feillet, Dominique & Giroudeau, Rodolphe & Naud, Olivier, 2016. "Branch-and-price algorithms for the solution of the multi-trip vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 249(2), pages 551-559.
    5. Tang, Jiafu & Yu, Yang & Li, Jia, 2015. "An exact algorithm for the multi-trip vehicle routing and scheduling problem of pickup and delivery of customers to the airport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 114-132.
    6. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    7. Dumez, Dorian & Lehuédé, Fabien & Péton, Olivier, 2021. "A large neighborhood search approach to the vehicle routing problem with delivery options," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 103-132.
    8. Taş, D. & Gendreau, M. & Dellaert, N. & van Woensel, T. & de Kok, A.G., 2014. "Vehicle routing with soft time windows and stochastic travel times: A column generation and branch-and-price solution approach," European Journal of Operational Research, Elsevier, vol. 236(3), pages 789-799.
    9. Frey, Christian M.M. & Jungwirth, Alexander & Frey, Markus & Kolisch, Rainer, 2023. "The vehicle routing problem with time windows and flexible delivery locations," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1142-1159.
    10. Chane-Haï Timothée & Vercraene Samuel & Monteiro Thibaud, 2023. "The assignment-dial-a-ride-problem," Health Care Management Science, Springer, vol. 26(4), pages 770-784, December.
    11. Matteo Salani & Maria Battarra, 2018. "The opportunity cost of time window violations," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 343-361, December.
    12. Ponboon, Sattrawut & Qureshi, Ali Gul & Taniguchi, Eiichi, 2016. "Branch-and-price algorithm for the location-routing problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 1-19.
    13. Yuan, Yuan & Cattaruzza, Diego & Ogier, Maxime & Semet, Frédéric & Vigo, Daniele, 2021. "A column generation based heuristic for the generalized vehicle routing problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    14. Yuan, Yuan & Cattaruzza, Diego & Ogier, Maxime & Semet, Frédéric, 2020. "A branch-and-cut algorithm for the generalized traveling salesman problem with time windows," European Journal of Operational Research, Elsevier, vol. 286(3), pages 849-866.
    15. Christian Tilk & Michael Drexl & Stefan Irnich, 2018. "Nested Branch-and-Price-and-Cut for Vehicle Routing Problems with Multiple Resource Interdependencies," Working Papers 1801, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    16. Alexander Jungwirth & Guy Desaulniers & Markus Frey & Rainer Kolisch, 2022. "Exact Branch-Price-and-Cut for a Hospital Therapist Scheduling Problem with Flexible Service Locations and Time-Dependent Location Capacity," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1157-1175, March.
    17. Elisabeth Lübbecke & Marco E. Lübbecke & Rolf H. Möhring, 2019. "Ship Traffic Optimization for the Kiel Canal," Operations Research, INFORMS, vol. 67(3), pages 791-812, May.
    18. Yang, Baiyu & Miller-Hooks, Elise, 2004. "Adaptive routing considering delays due to signal operations," Transportation Research Part B: Methodological, Elsevier, vol. 38(5), pages 385-413, June.
    19. Belanger, Nicolas & Desaulniers, Guy & Soumis, Francois & Desrosiers, Jacques, 2006. "Periodic airline fleet assignment with time windows, spacing constraints, and time dependent revenues," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1754-1766, December.
    20. Sébastien Mouthuy & Florence Massen & Yves Deville & Pascal Van Hentenryck, 2015. "A Multistage Very Large-Scale Neighborhood Search for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 49(2), pages 223-238, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:282:y:2020:i:1:p:334-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.